| ランク | トピック | 問題 | フォーマット化された問題 |
|---|---|---|---|
| 41801 | 平方根の性質を利用して解く | x^2=23 | |
| 41802 | 3つの順序対の解を求める | f(x) = log base 1/2 of x | |
| 41803 | 平方根の性質を利用して解く | x^2=10x | |
| 41804 | 平方根の性質を利用して解く | v^2=49 | |
| 41805 | 3つの順序対の解を求める | h(x)=(x-2)^2-9 | |
| 41806 | 平方根の性質を利用して解く | x^2-45=0 | |
| 41807 | 平方根の性質を利用して解く | x^2-50=0 | |
| 41808 | 3つの順序対の解を求める | y+3x=9 | |
| 41809 | 平方根の性質を利用して解く | x^2=39 | |
| 41810 | 平方根の性質を利用して解く | x^2=31 | |
| 41811 | 3つの順序対の解を求める | f(x)=(2)^x | |
| 41812 | 平方根の性質を利用して解く | x^2=90 | |
| 41813 | 平方根の性質を利用して解く | (x-3)^2=27 | |
| 41814 | 3つの順序対の解を求める | r(x)=-8/9x | |
| 41815 | 平方根の性質を利用して解く | (x-3)^2=28 | |
| 41816 | 3つの順序対の解を求める | Y-3=5(x+2) | |
| 41817 | 平方根の性質を利用して解く | (x+6)^2=4 | |
| 41818 | 3つの順序対の解を求める | g(x)=x^2+5x+6 | |
| 41819 | 3つの順序対の解を求める | r(x)=x^2+7x+6 | |
| 41820 | 平方根の性質を利用して解く | (7x-5)^2=49 | |
| 41821 | 3つの順序対の解を求める | 4x+7y=5 | |
| 41822 | 平方根の性質を利用して解く | (5p+1)^2=8 | |
| 41823 | 平方根の性質を利用して解く | (9x-2)^2=4 | |
| 41824 | 3つの順序対の解を求める | -3x+7y=-10 | |
| 41825 | 平方根の性質を利用して解く | (9x-5)^2=25 | |
| 41826 | 3つの順序対の解を求める | y=-1/5x-4 | |
| 41827 | 平方根の性質を利用して解く | (4x-5)^2=64 | |
| 41828 | 平方根の性質を利用して解く | (2x-5)^2=81 | |
| 41829 | グラフ化する | f(x)=1/2x-4 | |
| 41830 | 3つの順序対の解を求める | 2x-2y=-8 | |
| 41831 | グラフ化する | f(x)=1/3x-4 | |
| 41832 | 3つの順序対の解を求める | 10x-8y=18 | |
| 41833 | グラフ化する | f(x)=1/3x-6 | |
| 41834 | 3つの順序対の解を求める | 2x+5y-4z=40 | |
| 41835 | 3つの順序対の解を求める | f(x)=-3/4x | |
| 41836 | グラフ化する | f(x)=-(x-2)^2+4 | |
| 41837 | 3つの順序対の解を求める | -3x-y=7 | |
| 41838 | 3つの順序対の解を求める | -8x-7y=0 | |
| 41839 | 3つの順序対の解を求める | h(x)=(x-3)^2-1 | |
| 41840 | 値を求める | (8!)/(5!*3!) | |
| 41841 | 3つの順序対の解を求める | 4x+6y+2z=12 | |
| 41842 | 値を求める | (3-i)/(1+i) | |
| 41843 | グラフ化する | f(x)=(5/3)^x | |
| 41844 | グラフ化する | f(x)=(5/8)^x | |
| 41845 | 3つの順序対の解を求める | 6x+7y=42 | |
| 41846 | グラフ化する | f(x)=(0.5)^x | |
| 41847 | 3つの順序対の解を求める | y=x^3-7 | |
| 41848 | 3つの順序対の解を求める | 4x-7y=19 | |
| 41849 | 3つの順序対の解を求める | y=-2x-10 | |
| 41850 | 3つの順序対の解を求める | y=5x+22 | |
| 41851 | グラフ化する | 9x-3y=27 | |
| 41852 | 3つの順序対の解を求める | y-3=5(x-9) | |
| 41853 | グラフ化する | 4x-2y=6 | |
| 41854 | 3つの順序対の解を求める | 2x+3y=5x-y | |
| 41855 | グラフ化する | 4x-2y<-3 | |
| 41856 | 3つの順序対の解を求める | y=7/4x | |
| 41857 | 3つの順序対の解を求める | y=1/5x+32/5 | |
| 41858 | グラフ化する | 3x-y=7 | |
| 41859 | 3つの順序対の解を求める | -5x-3y=25 | |
| 41860 | グラフ化する | 3x-y=8 | |
| 41861 | 簡略化 | xの平方根の平方根 | |
| 41862 | 3つの順序対の解を求める | -3x-3y=0 | |
| 41863 | グラフ化する | -4 | |
| 41864 | 3つの順序対の解を求める | 3x-3y=0 | |
| 41865 | 簡略化 | (8+ 6)/(の平方根2)の平方根 | |
| 41866 | グラフ化する | 3x-2 | |
| 41867 | 3つの順序対の解を求める | -4x-y=-4 | |
| 41868 | グラフ化する | 6x-y<12 | |
| 41869 | グラフ化する | y=-7x^2 | |
| 41870 | グラフ化する | 5x-y=5 | |
| 41871 | グラフ化する | 6x-2y=18 | |
| 41872 | 簡略化 | 2x*2x | |
| 41873 | グラフ化する | -2x+y<6 | |
| 41874 | グラフ化する | 3x+y>7 | |
| 41875 | グラフ化する | 3x+5y=-5 | |
| 41876 | グラフ化する | -3x+4y=12 | |
| 41877 | 3つの順序対の解を求める | 7x+6y=0 | |
| 41878 | 3つの順序対の解を求める | k(x)=(x-1)^2-6 | |
| 41879 | グラフ化する | x^2+2x+5 | |
| 41880 | 3つの順序対の解を求める | A(n)=-6+(n-1)(1/5) | |
| 41881 | グラフ化する | x^3+3x^2-x-3 | |
| 41882 | 3つの順序対の解を求める | 3x+7y=17 | |
| 41883 | グラフ化する | x+1の立方根 | |
| 41884 | 3つの順序対の解を求める | 4x+5y=13 | |
| 41885 | グラフ化する | x+3の平方根 | |
| 41886 | グラフ化する | x-1の対数の底4 | |
| 41887 | 増加/減少する場所を求める | f(x)=5(4)^x | |
| 41888 | グラフ化する | x-2の対数の底2 | |
| 41889 | 増加/減少する場所を求める | P(x)=-2x^3-14x^2+2x+83 | |
| 41890 | 数のタイプを判断する | 10の平方根 | |
| 41891 | 数のタイプを判断する | 5 | |
| 41892 | Решить относительно x | 13(x-3)=39 | |
| 41893 | 逆元を求める | x^3-2 | |
| 41894 | 増加/減少する場所を求める | f(x) = natural log of x^2+1 | |
| 41895 | 平方完成する | x^2-4x+4 | |
| 41896 | 増加/減少する場所を求める | f(x)=5x^2+10x+3 | |
| 41897 | 平方完成する | x^2-6x+8 | |
| 41898 | 平方完成する | x^2-12x+36 | |
| 41899 | 増加/減少する場所を求める | f(x)=x^4-4x^3+6 | |
| 41900 | 平方完成する | x^2+22x |