Trigonometri Contoh
Langkah 1
Tambahkan ke kedua sisi persamaan.
Langkah 2
Langkah 2.1
Bagilah setiap suku di dengan .
Langkah 2.2
Sederhanakan sisi kirinya.
Langkah 2.2.1
Batalkan faktor persekutuan dari .
Langkah 2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.2.1.2
Bagilah dengan .
Langkah 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 4
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Sebarang akar dari adalah .
Langkah 4.3
Sederhanakan penyebutnya.
Langkah 4.3.1
Tulis kembali sebagai .
Langkah 4.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5
Langkah 5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 6
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 7
Langkah 7.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 7.2
Sederhanakan sisi kanannya.
Langkah 7.2.1
Nilai eksak dari adalah .
Langkah 7.3
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 7.4
Sederhanakan .
Langkah 7.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.4.2
Gabungkan pecahan.
Langkah 7.4.2.1
Gabungkan dan .
Langkah 7.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.4.3
Sederhanakan pembilangnya.
Langkah 7.4.3.1
Kalikan dengan .
Langkah 7.4.3.2
Kurangi dengan .
Langkah 7.5
Tentukan periode dari .
Langkah 7.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.5.4
Bagilah dengan .
Langkah 7.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 8
Langkah 8.1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 8.2
Sederhanakan sisi kanannya.
Langkah 8.2.1
Nilai eksak dari adalah .
Langkah 8.3
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 8.4
Sederhanakan .
Langkah 8.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 8.4.2
Gabungkan pecahan.
Langkah 8.4.2.1
Gabungkan dan .
Langkah 8.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 8.4.3
Sederhanakan pembilangnya.
Langkah 8.4.3.1
Kalikan dengan .
Langkah 8.4.3.2
Kurangi dengan .
Langkah 8.5
Tentukan periode dari .
Langkah 8.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 8.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 8.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 8.5.4
Bagilah dengan .
Langkah 8.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 9
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 10
Langkah 10.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 10.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat