Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 1.2
kontinu di .
Fungsinya kontinu.
Fungsinya kontinu.
Langkah 2
Langkah 2.1
Tentukan turunannya.
Langkah 2.1.1
Tentukan turunan pertamanya.
Langkah 2.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.1.2
Evaluasi .
Langkah 2.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.1.2.3
Kalikan dengan .
Langkah 2.1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.1.3.2
Tambahkan dan .
Langkah 2.1.2
Turunan pertama dari terhadap adalah .
Langkah 2.2
Tentukan apakah turunannya kontinu di .
Langkah 2.2.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 2.2.2
kontinu di .
Fungsinya kontinu.
Fungsinya kontinu.
Langkah 2.3
Fungsinya terdiferensialkan pada karena turunannya kontinu di .
Fungsinya terdiferensialkan.
Fungsinya terdiferensialkan.
Langkah 3
Agar panjang busur yang terjamin, fungsi dan turunannya harus kontinu pada interval tertutup .
Fungsi dan turunannya kontinu pada interval tertutup .
Langkah 4
Langkah 4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.2
Evaluasi .
Langkah 4.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.2.3
Kalikan dengan .
Langkah 4.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 4.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.3.2
Tambahkan dan .
Langkah 5
Untuk menghitung panjang busur fungsi, gunakan rumus .
Langkah 6
Langkah 6.1
Terapkan aturan konstanta.
Langkah 6.2
Substitusikan dan sederhanakan.
Langkah 6.2.1
Evaluasi pada dan pada .
Langkah 6.2.2
Sederhanakan.
Langkah 6.2.2.1
Pindahkan ke sebelah kiri .
Langkah 6.2.2.2
Kalikan dengan .
Langkah 6.2.2.3
Kurangi dengan .
Langkah 7
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Langkah 8