Kalkulus Contoh

Menentukan di Mana Fungsinya Meningkat/Menurun Menggunakan Turunan
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.1.4
Faktorkan dari .
Langkah 2.2.1.5
Faktorkan dari .
Langkah 2.2.2
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Faktorkan menggunakan uji akar rasional.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 2.2.2.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 2.2.2.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 2.2.2.1.3.2
Naikkan menjadi pangkat .
Langkah 2.2.2.1.3.3
Tambahkan dan .
Langkah 2.2.2.1.3.4
Kurangi dengan .
Langkah 2.2.2.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 2.2.2.1.5
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
-++-
Langkah 2.2.2.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-++-
Langkah 2.2.2.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
-++-
+-
Langkah 2.2.2.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-++-
-+
Langkah 2.2.2.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-++-
-+
+
Langkah 2.2.2.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
-++-
-+
++
Langkah 2.2.2.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+
-++-
-+
++
Langkah 2.2.2.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
+
-++-
-+
++
+-
Langkah 2.2.2.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+
-++-
-+
++
-+
Langkah 2.2.2.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+
-++-
-+
++
-+
+
Langkah 2.2.2.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+
-++-
-+
++
-+
+-
Langkah 2.2.2.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
++
-++-
-+
++
-+
+-
Langkah 2.2.2.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
++
-++-
-+
++
-+
+-
+-
Langkah 2.2.2.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
++
-++-
-+
++
-+
+-
-+
Langkah 2.2.2.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
++
-++-
-+
++
-+
+-
-+
Langkah 2.2.2.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 2.2.2.1.6
Tulis sebagai himpunan faktor.
Langkah 2.2.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 2.5.2.2
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 2.5.2.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.3.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.3.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.3.1.2.1
Kalikan dengan .
Langkah 2.5.2.3.1.2.2
Kalikan dengan .
Langkah 2.5.2.3.1.3
Kurangi dengan .
Langkah 2.5.2.3.1.4
Tulis kembali sebagai .
Langkah 2.5.2.3.1.5
Tulis kembali sebagai .
Langkah 2.5.2.3.1.6
Tulis kembali sebagai .
Langkah 2.5.2.3.2
Kalikan dengan .
Langkah 2.5.2.4
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.4.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.4.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.4.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.4.1.2.1
Kalikan dengan .
Langkah 2.5.2.4.1.2.2
Kalikan dengan .
Langkah 2.5.2.4.1.3
Kurangi dengan .
Langkah 2.5.2.4.1.4
Tulis kembali sebagai .
Langkah 2.5.2.4.1.5
Tulis kembali sebagai .
Langkah 2.5.2.4.1.6
Tulis kembali sebagai .
Langkah 2.5.2.4.2
Kalikan dengan .
Langkah 2.5.2.4.3
Ubah menjadi .
Langkah 2.5.2.4.4
Tulis kembali sebagai .
Langkah 2.5.2.4.5
Faktorkan dari .
Langkah 2.5.2.4.6
Faktorkan dari .
Langkah 2.5.2.4.7
Pindahkan tanda negatif di depan pecahan.
Langkah 2.5.2.5
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.5.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.5.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2.5.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.5.1.2.1
Kalikan dengan .
Langkah 2.5.2.5.1.2.2
Kalikan dengan .
Langkah 2.5.2.5.1.3
Kurangi dengan .
Langkah 2.5.2.5.1.4
Tulis kembali sebagai .
Langkah 2.5.2.5.1.5
Tulis kembali sebagai .
Langkah 2.5.2.5.1.6
Tulis kembali sebagai .
Langkah 2.5.2.5.2
Kalikan dengan .
Langkah 2.5.2.5.3
Ubah menjadi .
Langkah 2.5.2.5.4
Tulis kembali sebagai .
Langkah 2.5.2.5.5
Faktorkan dari .
Langkah 2.5.2.5.6
Faktorkan dari .
Langkah 2.5.2.5.7
Pindahkan tanda negatif di depan pecahan.
Langkah 2.5.2.6
Jawaban akhirnya adalah kombinasi dari kedua penyelesaian tersebut.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Setelah mencari titik yang membuat turunan sama dengan atau tidak terdefinisi, interval untuk memeriksa di mana meningkat dan di mana menurun yaitu .
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tambahkan dan .
Langkah 5.2.2.2
Kurangi dengan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Tambahkan dan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 8
Masukkan Soal
Mathway memerlukan javascript dan browser modern.