输入问题...
微积分学 示例
解题步骤 1
无穷等比数列的和可以用公式 来求得,其中 是首项, 是相邻两项之间的比例。
解题步骤 2
将 和 代入公式,求 。
化简。
将分子乘以分母的倒数。
合并。
约去 和 的公因数。
从 中分解出因数 。
约去公因数。
从 中分解出因数 。
约去公因数。
重写表达式。
约去 和 的公因数。
从 中分解出因数 。
约去公因数。
乘以 。
约去公因数。
重写表达式。
用 除以 。
化简每一项。
运用分配律。
将 乘以 。
从 中减去 。
从 中减去 。
使用负指数规则 重写表达式。
组合 和 。
解题步骤 3
Since , the series converges.
解题步骤 4
将 代入 以替换 。
化简。
计算指数。
计算指数。
解题步骤 5
将公比和首项的值代入求和公式。
解题步骤 6
将分子乘以分母的倒数。
化简分母。
将 写成具有公分母的分数。
在公分母上合并分子。
从 中减去 。
将分子乘以分母的倒数。
约去 的公因数。
从 中分解出因数 。
约去公因数。
重写表达式。