Lượng giác Ví dụ

Giải x 2cos(x)cot(x)-cot(x)=1-2cos(x)
Bước 1
Chuyển tất cả các biểu thức sang vế trái của phương trình.
Nhấp để xem thêm các bước...
Bước 1.1
Trừ khỏi cả hai vế của phương trình.
Bước 1.2
Cộng cho cả hai vế của phương trình.
Bước 2
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.1
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Nhấp để xem thêm các bước...
Bước 2.1.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 2.1.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 2.2
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 4.1
Đặt bằng với .
Bước 4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 4.2.1
Cộng cho cả hai vế của phương trình.
Bước 4.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Chia mỗi số hạng trong cho .
Bước 4.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 4.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 4.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.2.2.1.2
Chia cho .
Bước 4.2.3
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 4.2.4
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 4.2.4.1
Giá trị chính xác của .
Bước 4.2.5
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 4.2.6
Rút gọn .
Nhấp để xem thêm các bước...
Bước 4.2.6.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.2.6.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 4.2.6.2.1
Kết hợp .
Bước 4.2.6.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 4.2.6.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 4.2.6.3.1
Nhân với .
Bước 4.2.6.3.2
Trừ khỏi .
Bước 4.2.7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 4.2.7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 4.2.7.2
Thay thế với trong công thức cho chu kỳ.
Bước 4.2.7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 4.2.7.4
Chia cho .
Bước 4.2.8
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Đặt bằng với .
Bước 5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 5.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.2.2
Lấy nghịch đảo cotang của cả hai vế của phương trình để trích xuất từ trong hàm cotang.
Bước 5.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.2.3.1
Giá trị chính xác của .
Bước 5.2.4
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Bước 5.2.5
Rút gọn biểu thức để tìm đáp án thứ hai.
Nhấp để xem thêm các bước...
Bước 5.2.5.1
Cộng vào .
Bước 5.2.5.2
Góc tìm được dương và có cùng cạnh cuối với .
Bước 5.2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 5.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 5.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 5.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 5.2.6.4
Chia cho .
Bước 5.2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 7
Hợp nhất để .
, cho mọi số nguyên