Giải tích Ví dụ

Tìm Các Điểm Uốn y=2x-tan(x)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.3
Nhân với .
Bước 2.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.3.2
Đạo hàm của đối với .
Bước 2.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.2.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.1.2
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.2.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2.2.3
Đạo hàm của đối với .
Bước 2.2.2.4
Nâng lên lũy thừa .
Bước 2.2.2.5
Nâng lên lũy thừa .
Bước 2.2.2.6
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.2.2.7
Cộng .
Bước 2.2.2.8
Nhân với .
Bước 2.2.3
Trừ khỏi .
Bước 2.3
Đạo hàm bậc hai của đối với .
Bước 3
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt đạo hàm bậc hai bằng .
Bước 3.2
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 3.3
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.3.1
Đặt bằng với .
Bước 3.3.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 3.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Bước 3.3.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.3.2.2.1
Viết lại ở dạng .
Bước 3.3.2.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 3.3.2.2.3
Cộng hoặc trừ .
Bước 3.3.2.3
Khoảng biến thiên của secant là . Vì không nằm trong khoảng biến thiên này, nên không có đáp án.
Không có đáp án
Không có đáp án
Không có đáp án
Bước 3.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.4.1
Đặt bằng với .
Bước 3.4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 3.4.2.1
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 3.4.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.4.2.2.1
Giá trị chính xác của .
Bước 3.4.2.3
Hàm tang dương trong góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy cộng góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 3.4.2.4
Cộng .
Bước 3.4.2.5
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 3.4.2.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 3.4.2.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 3.4.2.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 3.4.2.5.4
Chia cho .
Bước 3.4.2.6
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3.5
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 3.6
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 4
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 5
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 7
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Bước 8
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 9