Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Bước 1.2.1
Tính giới hạn.
Bước 1.2.1.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.1.2
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.3
Rút gọn kết quả.
Bước 1.2.3.1
Giá trị chính xác của là .
Bước 1.2.3.2
Nhân với .
Bước 1.3
Tính giới hạn của mẫu số.
Bước 1.3.1
Tính giới hạn.
Bước 1.3.1.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.1.2
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.3
Rút gọn kết quả.
Bước 1.3.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.3.2
Nhân với .
Bước 1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.3
Đạo hàm của đối với là .
Bước 3.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.6
Nhân với .
Bước 4
Vì tử số dương và mẫu số tiến dần đến 0 và lớn hơn 0 đối với gần ở cả hai bên, nên hàm số tăng mà không bị giới hạn.