Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2
Tính .
Bước 1.1.2.1
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.1.2.3
Kết hợp và .
Bước 1.1.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 1.1.2.5
Rút gọn tử số.
Bước 1.1.2.5.1
Nhân với .
Bước 1.1.2.5.2
Trừ khỏi .
Bước 1.1.3
Tính .
Bước 1.1.3.1
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.3.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.1.3.3
Kết hợp và .
Bước 1.1.3.4
Kết hợp các tử số trên mẫu số chung.
Bước 1.1.3.5
Rút gọn tử số.
Bước 1.1.3.5.1
Nhân với .
Bước 1.1.3.5.2
Trừ khỏi .
Bước 1.1.4
Rút gọn mỗi số hạng.
Bước 1.1.4.1
Kết hợp và .
Bước 1.1.4.2
Kết hợp và .
Bước 1.2
Đạo hàm bậc nhất của đối với là .
Bước 2
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Vẽ đồ thị mỗi vế của phương trình. nghiệm là giá trị x của giao điểm.
Bước 3
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Bước 4.1
Thay bằng .
Bước 4.2
Tính giá trị tại .
Bước 4.2.1
Thay bằng .
Bước 4.2.2
Rút gọn.
Bước 4.2.2.1
Rút gọn mỗi số hạng.
Bước 4.2.2.1.1
Viết lại ở dạng .
Bước 4.2.2.1.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 4.2.2.1.3
Triệt tiêu thừa số chung .
Bước 4.2.2.1.3.1
Triệt tiêu thừa số chung.
Bước 4.2.2.1.3.2
Viết lại biểu thức.
Bước 4.2.2.1.4
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.2.2.1.5
Viết lại ở dạng .
Bước 4.2.2.1.6
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 4.2.2.1.7
Triệt tiêu thừa số chung .
Bước 4.2.2.1.7.1
Triệt tiêu thừa số chung.
Bước 4.2.2.1.7.2
Viết lại biểu thức.
Bước 4.2.2.1.8
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.2.2.2
Cộng và .
Bước 4.3
Liệt kê tất cả các điểm.
Bước 5