Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Quy Tắc L'Hôpital giới hạn khi x tiến dần đến infinity của ( logarit tự nhiên của logarit tự nhiên của x)/( logarit tự nhiên của x)
Bước 1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Vì logarit tiến dần đến vô cực, nên giá trị tiến đến .
Bước 1.3
Vì logarit tiến dần đến vô cực, nên giá trị tiến đến .
Bước 1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.2.2
Đạo hàm của đối với .
Bước 3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3
Đạo hàm của đối với .
Bước 3.4
Nhân với .
Bước 3.5
Sắp xếp lại các số hạng.
Bước 3.6
Đạo hàm của đối với .
Bước 4
Nhân tử số với nghịch đảo của mẫu số.
Bước 5
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 5.1
Kết hợp .
Bước 5.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.2.1
Triệt tiêu thừa số chung.
Bước 5.2.2
Viết lại biểu thức.
Bước 6
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .