Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Quy Tắc L'Hôpital giới hạn khi x tiến dần đến infinity của (e^(2x)+x^2)/(e^x+4x)
Bước 1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 1.2.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 1.2.4
Vô cùng cộng vô cùng là vô cùng.
Bước 1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.3.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 1.3.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 1.3.4
Vô cùng cộng vô cùng là vô cùng.
Bước 1.3.5
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.3
Tính .
Nhấp để xem thêm các bước...
Bước 3.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.3.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 3.3.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.4
Nhân với .
Bước 3.3.5
Di chuyển sang phía bên trái của .
Bước 3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.5
Sắp xếp lại các số hạng.
Bước 3.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 3.8
Tính .
Nhấp để xem thêm các bước...
Bước 3.8.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.8.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.8.3
Nhân với .
Bước 4
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 4.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 4.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 4.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 4.1.2.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 4.1.2.1.2
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 4.1.2.2
Vì hàm số tiến dần đến , hằng số dương nhân với hàm số tiến dần đến .
Nhấp để xem thêm các bước...
Bước 4.1.2.2.1
Xét giới hạn với bội số không đổi đã bị loại bỏ.
Bước 4.1.2.2.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 4.1.2.3
Vô cùng cộng vô cùng là vô cùng.
Bước 4.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 4.1.3.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 4.1.3.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 4.1.3.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 4.1.3.4
Vô cùng cộng hoặc trừ một số là vô cùng.
Bước 4.1.3.5
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 4.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 4.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 4.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 4.3.1
Tính đạo hàm tử số và mẫu số.
Bước 4.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.3.3
Tính .
Nhấp để xem thêm các bước...
Bước 4.3.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.3.3
Nhân với .
Bước 4.3.4
Tính .
Nhấp để xem thêm các bước...
Bước 4.3.4.1
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.4.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.3.4.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.3.4.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.3.4.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.3.4.3
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.4.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.4.5
Nhân với .
Bước 4.3.4.6
Di chuyển sang phía bên trái của .
Bước 4.3.4.7
Nhân với .
Bước 4.3.5
Sắp xếp lại các số hạng.
Bước 4.3.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.3.8
là hằng số đối với , đạo hàm của đối với .
Bước 4.3.9
Cộng .
Bước 5
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 5.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 5.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 5.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 5.1.2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.1.2.2
Vì hàm số tiến dần đến , hằng số dương nhân với hàm số tiến dần đến .
Nhấp để xem thêm các bước...
Bước 5.1.2.2.1
Xét giới hạn với bội số không đổi đã bị loại bỏ.
Bước 5.1.2.2.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 5.1.2.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.1.2.4
Vô cùng cộng hoặc trừ một số là vô cùng.
Bước 5.1.3
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 5.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 5.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 5.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 5.3.1
Tính đạo hàm tử số và mẫu số.
Bước 5.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.3.3
Tính .
Nhấp để xem thêm các bước...
Bước 5.3.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 5.3.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 5.3.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 5.3.3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 5.3.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 5.3.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 5.3.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.3.3.5
Nhân với .
Bước 5.3.3.6
Di chuyển sang phía bên trái của .
Bước 5.3.3.7
Nhân với .
Bước 5.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 5.3.5
Cộng .
Bước 5.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 5.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 5.4.1
Đưa ra ngoài .
Bước 5.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 5.4.2.1
Nhân với .
Bước 5.4.2.2
Triệt tiêu thừa số chung.
Bước 5.4.2.3
Viết lại biểu thức.
Bước 5.4.2.4
Chia cho .
Bước 6
Vì hàm số tiến dần đến , hằng số dương nhân với hàm số tiến dần đến .
Nhấp để xem thêm các bước...
Bước 6.1
Xét giới hạn với bội số không đổi đã bị loại bỏ.
Bước 6.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .