Giải tích Ví dụ

Tìm Các Điểm Cực Trị f(x) = square root of x^2+8x+17
Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Sử dụng để viết lại ở dạng .
Bước 1.1.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.1.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.1.4
Kết hợp .
Bước 1.1.5
Kết hợp các tử số trên mẫu số chung.
Bước 1.1.6
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 1.1.6.1
Nhân với .
Bước 1.1.6.2
Trừ khỏi .
Bước 1.1.7
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 1.1.7.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.1.7.2
Kết hợp .
Bước 1.1.7.3
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 1.1.8
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.10
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.11
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.12
Nhân với .
Bước 1.1.13
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.14
Cộng .
Bước 1.1.15
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.15.1
Sắp xếp lại các thừa số của .
Bước 1.1.15.2
Nhân với .
Bước 1.1.15.3
Đưa ra ngoài .
Bước 1.1.15.4
Đưa ra ngoài .
Bước 1.1.15.5
Đưa ra ngoài .
Bước 1.1.15.6
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.1.15.6.1
Đưa ra ngoài .
Bước 1.1.15.6.2
Triệt tiêu thừa số chung.
Bước 1.1.15.6.3
Viết lại biểu thức.
Bước 1.2
Đạo hàm bậc nhất của đối với .
Bước 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Cho tử bằng không.
Bước 2.3
Trừ khỏi cả hai vế của phương trình.
Bước 3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay bằng .
Bước 4.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Nâng lên lũy thừa .
Bước 4.1.2.2
Nhân với .
Bước 4.1.2.3
Trừ khỏi .
Bước 4.1.2.4
Cộng .
Bước 4.1.2.5
Bất cứ nghiệm nào của đều là .
Bước 4.2
Liệt kê tất cả các điểm.
Bước 5