Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 1.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.4
Tìm đạo hàm.
Bước 1.4.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.4.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.4.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.4.4
Nhân với .
Bước 1.4.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.4.6
Rút gọn biểu thức.
Bước 1.4.6.1
Cộng và .
Bước 1.4.6.2
Nhân với .
Bước 1.4.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.4.8
Nhân với .
Bước 1.5
Rút gọn.
Bước 1.5.1
Áp dụng thuộc tính phân phối.
Bước 1.5.2
Nhân với .
Bước 1.5.3
Đưa ra ngoài .
Bước 1.5.3.1
Đưa ra ngoài .
Bước 1.5.3.2
Đưa ra ngoài .
Bước 1.5.3.3
Đưa ra ngoài .
Bước 1.5.4
Cộng và .
Bước 2
Bước 2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 2.3
Tìm đạo hàm.
Bước 2.3.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.3.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.4
Nhân với .
Bước 2.3.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.3.6
Rút gọn biểu thức.
Bước 2.3.6.1
Cộng và .
Bước 2.3.6.2
Di chuyển sang phía bên trái của .
Bước 2.4
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.4.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.4.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.5
Tìm đạo hàm.
Bước 2.5.1
Di chuyển sang phía bên trái của .
Bước 2.5.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.5.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.5.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.5.5
Nhân với .
Bước 2.5.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.5.7
Rút gọn biểu thức.
Bước 2.5.7.1
Cộng và .
Bước 2.5.7.2
Nhân với .
Bước 2.6
Rút gọn.
Bước 2.6.1
Áp dụng thuộc tính phân phối.
Bước 2.6.2
Áp dụng thuộc tính phân phối.
Bước 2.6.3
Nhân với .
Bước 2.6.4
Nhân với .
Bước 2.6.5
Nhân với .
Bước 2.6.6
Đưa ra ngoài .
Bước 2.6.6.1
Đưa ra ngoài .
Bước 2.6.6.2
Đưa ra ngoài .
Bước 2.6.6.3
Đưa ra ngoài .
Bước 3
Đạo hàm bậc hai của đối với là .