Nhập bài toán...
Giải tích Ví dụ
,
Bước 1
Nếu liên tục trên khoảng và khả vi trên , thì ít nhất một số thực tồn tại trong khoảng sao cho . Định lý giá trị trung bình biểu thị mối liên hệ giữa hệ số góc của tiếp tuyến với đường cong tại và hệ số góc của đường thẳng đi qua các điểm và .
Nếu liên tục trên
và nếu khả vi trên ,
thì tồn tại ít nhất một điểm, trong : .
Bước 2
Bước 2.1
Để tìm xem hàm có liên tục trên không, hãy tìm tập xác định của .
Bước 2.1.1
Đặt giá trị đối số trong lớn hơn để tìm nơi biểu thức xác định.
Bước 2.1.2
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 2.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 3
Bước 3.1
Đạo hàm của đối với là .
Bước 3.2
Đạo hàm bậc nhất của đối với là .
Bước 4
Bước 4.1
Để tìm xem hàm có liên tục trên không, hãy tìm tập xác định của .
Bước 4.1.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 4.1.2
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 5
Hàm số khả vi trên vì đạo hàm liên tục trên .
Hàm số này khả vi.
Bước 6
thỏa hai điều kiện của định lý giá trị trung bình. Nó liên tục trên và khả vi trên .
liên tục trên và khả vi trên .
Bước 7
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Bước 7.2.1
Logarit tự nhiên của là .
Bước 7.2.2
Câu trả lời cuối cùng là .
Bước 8
Bước 8.1
Thay thế biến bằng trong biểu thức.
Bước 8.2
Câu trả lời cuối cùng là .
Bước 9
Bước 9.1
Phân tích mỗi số hạng thành thừa số.
Bước 9.1.1
Nhân với .
Bước 9.1.2
Cộng và .
Bước 9.1.3
Nhân với .
Bước 9.1.4
Trừ khỏi .
Bước 9.1.5
Viết lại ở dạng .
Bước 9.1.6
Rút gọn bằng cách di chuyển trong logarit.
Bước 9.2
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Bước 9.2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 9.2.2
BCNN của một và bất kỳ biểu thức nào chính là biểu thức đó.
Bước 9.3
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Bước 9.3.1
Nhân mỗi số hạng trong với .
Bước 9.3.2
Rút gọn vế trái.
Bước 9.3.2.1
Triệt tiêu thừa số chung .
Bước 9.3.2.1.1
Triệt tiêu thừa số chung.
Bước 9.3.2.1.2
Viết lại biểu thức.
Bước 9.3.3
Rút gọn vế phải.
Bước 9.3.3.1
Sắp xếp lại các thừa số trong .
Bước 9.4
Giải phương trình.
Bước 9.4.1
Viết lại phương trình ở dạng .
Bước 9.4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 9.4.2.1
Chia mỗi số hạng trong cho .
Bước 9.4.2.2
Rút gọn vế trái.
Bước 9.4.2.2.1
Triệt tiêu thừa số chung.
Bước 9.4.2.2.2
Chia cho .
Bước 10
Tìm được một đường tiếp tuyến tại song song với đường thẳng đi qua các điểm cuối và .
Có một đường tiếp tuyến tại song song với đường thẳng đi qua các điểm cuối và
Bước 11