Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Bước 2.1
Tìm đạo hàm.
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Đạo hàm của đối với là .
Bước 3
Bước 3.1
Tìm đạo hàm.
Bước 3.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.1.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.2
Tính .
Bước 3.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.2.2
Đạo hàm của đối với là .
Bước 3.2.3
Nhân với .
Bước 3.2.4
Nhân với .
Bước 3.3
Cộng và .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Trừ khỏi cả hai vế của phương trình.
Bước 6
Bước 6.1
Chia mỗi số hạng trong cho .
Bước 6.2
Rút gọn vế trái.
Bước 6.2.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 6.2.2
Chia cho .
Bước 6.3
Rút gọn vế phải.
Bước 6.3.1
Chia cho .
Bước 7
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 8
Bước 8.1
Giá trị chính xác của là .
Bước 9
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 10
Trừ khỏi .
Bước 11
Đáp án của phương trình .
Bước 12
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 13
Giá trị chính xác của là .
Bước 14
Bước 14.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 14.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 14.2.1
Thay thế biến bằng trong biểu thức.
Bước 14.2.2
Rút gọn kết quả.
Bước 14.2.2.1
Rút gọn mỗi số hạng.
Bước 14.2.2.1.1
Tính .
Bước 14.2.2.1.2
Nhân với .
Bước 14.2.2.2
Cộng và .
Bước 14.2.2.3
Câu trả lời cuối cùng là .
Bước 14.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 14.3.1
Thay thế biến bằng trong biểu thức.
Bước 14.3.2
Rút gọn kết quả.
Bước 14.3.2.1
Rút gọn mỗi số hạng.
Bước 14.3.2.1.1
Tính .
Bước 14.3.2.1.2
Nhân với .
Bước 14.3.2.2
Cộng và .
Bước 14.3.2.3
Câu trả lời cuối cùng là .
Bước 14.4
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 14.4.1
Thay thế biến bằng trong biểu thức.
Bước 14.4.2
Rút gọn kết quả.
Bước 14.4.2.1
Rút gọn mỗi số hạng.
Bước 14.4.2.1.1
Tính .
Bước 14.4.2.1.2
Nhân với .
Bước 14.4.2.2
Cộng và .
Bước 14.4.2.3
Câu trả lời cuối cùng là .
Bước 14.5
Vì đạo hàm bậc nhất không thay đổi dấu xung quanh , nên đây không phải là một cực đại địa phương hoặc cực tiểu địa phương.
Không phải là một cực đại địa phương hoặc cực tiểu địa phương
Bước 14.6
Không tìm được cực đại địa phương hoặc cực tiểu địa phương cho .
Không có cực đại địa phương hoặc cực tiểu địa phương
Không có cực đại địa phương hoặc cực tiểu địa phương
Bước 15