Giải tích Ví dụ

Tìm Các Điểm Uốn (x+3)/(x^2)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 2.1.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.1.2.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.1.2.1.2
Nhân với .
Bước 2.1.2.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.4
là hằng số đối với , đạo hàm của đối với .
Bước 2.1.2.5
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.1.2.5.1
Cộng .
Bước 2.1.2.5.2
Nhân với .
Bước 2.1.2.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.7
Rút gọn bằng cách đặt thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.1.2.7.1
Nhân với .
Bước 2.1.2.7.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.1.2.7.2.1
Đưa ra ngoài .
Bước 2.1.2.7.2.2
Đưa ra ngoài .
Bước 2.1.2.7.2.3
Đưa ra ngoài .
Bước 2.1.3
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.1.3.1
Đưa ra ngoài .
Bước 2.1.3.2
Triệt tiêu thừa số chung.
Bước 2.1.3.3
Viết lại biểu thức.
Bước 2.1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1.4.1
Áp dụng thuộc tính phân phối.
Bước 2.1.4.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.1.4.2.1
Nhân với .
Bước 2.1.4.2.2
Trừ khỏi .
Bước 2.1.4.3
Đưa ra ngoài .
Bước 2.1.4.4
Viết lại ở dạng .
Bước 2.1.4.5
Đưa ra ngoài .
Bước 2.1.4.6
Viết lại ở dạng .
Bước 2.1.4.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 2.2.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.2.3.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.2.3.1.2
Nhân với .
Bước 2.2.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.3.5
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.2.3.5.1
Cộng .
Bước 2.2.3.5.2
Nhân với .
Bước 2.2.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3.7
Rút gọn bằng cách đặt thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.2.3.7.1
Nhân với .
Bước 2.2.3.7.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.2.3.7.2.1
Đưa ra ngoài .
Bước 2.2.3.7.2.2
Đưa ra ngoài .
Bước 2.2.3.7.2.3
Đưa ra ngoài .
Bước 2.2.4
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.2.4.1
Đưa ra ngoài .
Bước 2.2.4.2
Triệt tiêu thừa số chung.
Bước 2.2.4.3
Viết lại biểu thức.
Bước 2.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.2.6.1
Nhân với .
Bước 2.2.6.2
Cộng .
Bước 2.2.7
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.2.7.1
Áp dụng thuộc tính phân phối.
Bước 2.2.7.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.2.7.2.1
Nhân với .
Bước 2.2.7.2.2
Trừ khỏi .
Bước 2.2.7.3
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.2.7.3.1
Đưa ra ngoài .
Bước 2.2.7.3.2
Đưa ra ngoài .
Bước 2.2.7.3.3
Đưa ra ngoài .
Bước 2.2.7.4
Đưa ra ngoài .
Bước 2.2.7.5
Viết lại ở dạng .
Bước 2.2.7.6
Đưa ra ngoài .
Bước 2.2.7.7
Viết lại ở dạng .
Bước 2.2.7.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.2.7.9
Nhân với .
Bước 2.2.7.10
Nhân với .
Bước 2.3
Đạo hàm bậc hai của đối với .
Bước 3
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt đạo hàm bậc hai bằng .
Bước 3.2
Cho tử bằng không.
Bước 3.3
Giải phương trình để tìm .
Nhấp để xem thêm các bước...
Bước 3.3.1
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.3.1.1
Chia mỗi số hạng trong cho .
Bước 3.3.1.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.3.1.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.3.1.2.1.1
Triệt tiêu thừa số chung.
Bước 3.3.1.2.1.2
Chia cho .
Bước 3.3.1.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.3.1.3.1
Chia cho .
Bước 3.3.2
Trừ khỏi cả hai vế của phương trình.
Bước 4
Tìm các điểm mà tại đó đạo hàm bậc hai là .
Nhấp để xem thêm các bước...
Bước 4.1
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay thế biến bằng trong biểu thức.
Bước 4.1.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 4.1.2.1.1
Cộng .
Bước 4.1.2.1.2
Nâng lên lũy thừa .
Bước 4.1.2.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 4.1.2.2.1
Đưa ra ngoài .
Bước 4.1.2.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 4.1.2.2.2.1
Đưa ra ngoài .
Bước 4.1.2.2.2.2
Triệt tiêu thừa số chung.
Bước 4.1.2.2.2.3
Viết lại biểu thức.
Bước 4.1.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.1.2.4
Câu trả lời cuối cùng là .
Bước 4.2
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 5
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.2.1
Cộng .
Bước 6.2.2
Nâng lên lũy thừa .
Bước 6.2.3
Nhân với .
Bước 6.2.4
Chia cho .
Bước 6.2.5
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Bước 7
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 7.2.1
Cộng .
Bước 7.2.2
Nâng lên lũy thừa .
Bước 7.2.3
Nhân với .
Bước 7.2.4
Chia cho .
Bước 7.2.5
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 8
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 9