Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.2.4
Kết hợp và .
Bước 2.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 2.2.6
Rút gọn tử số.
Bước 2.2.6.1
Nhân với .
Bước 2.2.6.2
Trừ khỏi .
Bước 2.2.7
Kết hợp và .
Bước 2.2.8
Kết hợp và .
Bước 2.2.9
Nhân với .
Bước 2.2.10
Đưa ra ngoài .
Bước 2.2.11
Triệt tiêu các thừa số chung.
Bước 2.2.11.1
Đưa ra ngoài .
Bước 2.2.11.2
Triệt tiêu thừa số chung.
Bước 2.2.11.3
Viết lại biểu thức.
Bước 2.2.11.4
Chia cho .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.3.4
Kết hợp và .
Bước 2.3.5
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.6
Rút gọn tử số.
Bước 2.3.6.1
Nhân với .
Bước 2.3.6.2
Trừ khỏi .
Bước 2.3.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.8
Kết hợp và .
Bước 2.3.9
Kết hợp và .
Bước 2.3.10
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 2.3.11
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 2.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.4.2
Cộng và .
Bước 3
Bước 3.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.2
Tính .
Bước 3.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.2.4
Kết hợp và .
Bước 3.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 3.2.6
Rút gọn tử số.
Bước 3.2.6.1
Nhân với .
Bước 3.2.6.2
Trừ khỏi .
Bước 3.2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.2.8
Kết hợp và .
Bước 3.2.9
Kết hợp và .
Bước 3.2.10
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 3.3
Tính .
Bước 3.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.3.2
Viết lại ở dạng .
Bước 3.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 3.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.3.5
Nhân các số mũ trong .
Bước 3.3.5.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 3.3.5.2
Nhân .
Bước 3.3.5.2.1
Kết hợp và .
Bước 3.3.5.2.2
Nhân với .
Bước 3.3.5.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.3.6
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.3.7
Kết hợp và .
Bước 3.3.8
Kết hợp các tử số trên mẫu số chung.
Bước 3.3.9
Rút gọn tử số.
Bước 3.3.9.1
Nhân với .
Bước 3.3.9.2
Trừ khỏi .
Bước 3.3.10
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.3.11
Kết hợp và .
Bước 3.3.12
Kết hợp và .
Bước 3.3.13
Nhân với bằng cách cộng các số mũ.
Bước 3.3.13.1
Di chuyển .
Bước 3.3.13.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 3.3.13.3
Kết hợp các tử số trên mẫu số chung.
Bước 3.3.13.4
Trừ khỏi .
Bước 3.3.13.5
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.3.14
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 3.3.15
Nhân với .
Bước 3.3.16
Nhân với .
Bước 3.3.17
Nhân với .
Bước 3.3.18
Nhân với .
Bước 3.3.19
Nhân với .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Bước 5.1
Tìm đạo hàm bậc một.
Bước 5.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.1.2
Tính .
Bước 5.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 5.1.2.4
Kết hợp và .
Bước 5.1.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 5.1.2.6
Rút gọn tử số.
Bước 5.1.2.6.1
Nhân với .
Bước 5.1.2.6.2
Trừ khỏi .
Bước 5.1.2.7
Kết hợp và .
Bước 5.1.2.8
Kết hợp và .
Bước 5.1.2.9
Nhân với .
Bước 5.1.2.10
Đưa ra ngoài .
Bước 5.1.2.11
Triệt tiêu các thừa số chung.
Bước 5.1.2.11.1
Đưa ra ngoài .
Bước 5.1.2.11.2
Triệt tiêu thừa số chung.
Bước 5.1.2.11.3
Viết lại biểu thức.
Bước 5.1.2.11.4
Chia cho .
Bước 5.1.3
Tính .
Bước 5.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.3.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 5.1.3.4
Kết hợp và .
Bước 5.1.3.5
Kết hợp các tử số trên mẫu số chung.
Bước 5.1.3.6
Rút gọn tử số.
Bước 5.1.3.6.1
Nhân với .
Bước 5.1.3.6.2
Trừ khỏi .
Bước 5.1.3.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.1.3.8
Kết hợp và .
Bước 5.1.3.9
Kết hợp và .
Bước 5.1.3.10
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 5.1.3.11
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 5.1.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.1.4.2
Cộng và .
Bước 5.2
Đạo hàm bậc nhất của đối với là .
Bước 6
Bước 6.1
Cho đạo hàm bằng .
Bước 6.2
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Bước 6.2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 6.2.2
BCNN của một và bất kỳ biểu thức nào chính là biểu thức đó.
Bước 6.3
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Bước 6.3.1
Nhân mỗi số hạng trong với .
Bước 6.3.2
Rút gọn vế trái.
Bước 6.3.2.1
Rút gọn mỗi số hạng.
Bước 6.3.2.1.1
Viết lại bằng tính chất giao hoán của phép nhân.
Bước 6.3.2.1.2
Nhân với bằng cách cộng các số mũ.
Bước 6.3.2.1.2.1
Di chuyển .
Bước 6.3.2.1.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 6.3.2.1.2.3
Kết hợp các tử số trên mẫu số chung.
Bước 6.3.2.1.2.4
Cộng và .
Bước 6.3.2.1.2.5
Chia cho .
Bước 6.3.2.1.3
Rút gọn .
Bước 6.3.2.1.4
Nhân với .
Bước 6.3.2.1.5
Triệt tiêu thừa số chung .
Bước 6.3.2.1.5.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 6.3.2.1.5.2
Triệt tiêu thừa số chung.
Bước 6.3.2.1.5.3
Viết lại biểu thức.
Bước 6.3.3
Rút gọn vế phải.
Bước 6.3.3.1
Nhân .
Bước 6.3.3.1.1
Nhân với .
Bước 6.3.3.1.2
Nhân với .
Bước 6.4
Giải phương trình.
Bước 6.4.1
Cộng cho cả hai vế của phương trình.
Bước 6.4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 6.4.2.1
Chia mỗi số hạng trong cho .
Bước 6.4.2.2
Rút gọn vế trái.
Bước 6.4.2.2.1
Triệt tiêu thừa số chung .
Bước 6.4.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.4.2.2.1.2
Chia cho .
Bước 7
Bước 7.1
Chuyển đổi các biểu thức có số mũ dạng phân số thành các căn thức
Bước 7.1.1
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 7.1.2
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 7.1.3
Bất kỳ đại lượng nào mũ lên đều là chính nó.
Bước 7.2
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 7.3
Giải tìm .
Bước 7.3.1
Để loại bỏ dấu căn ở vế trái của phương trình, lấy mũ ba cả hai vế của phương trình.
Bước 7.3.2
Rút gọn mỗi vế của phương trình.
Bước 7.3.2.1
Sử dụng để viết lại ở dạng .
Bước 7.3.2.2
Rút gọn vế trái.
Bước 7.3.2.2.1
Rút gọn .
Bước 7.3.2.2.1.1
Áp dụng quy tắc tích số cho .
Bước 7.3.2.2.1.2
Nâng lên lũy thừa .
Bước 7.3.2.2.1.3
Nhân các số mũ trong .
Bước 7.3.2.2.1.3.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 7.3.2.2.1.3.2
Triệt tiêu thừa số chung .
Bước 7.3.2.2.1.3.2.1
Triệt tiêu thừa số chung.
Bước 7.3.2.2.1.3.2.2
Viết lại biểu thức.
Bước 7.3.2.3
Rút gọn vế phải.
Bước 7.3.2.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 7.3.3
Giải tìm .
Bước 7.3.3.1
Chia mỗi số hạng trong cho và rút gọn.
Bước 7.3.3.1.1
Chia mỗi số hạng trong cho .
Bước 7.3.3.1.2
Rút gọn vế trái.
Bước 7.3.3.1.2.1
Triệt tiêu thừa số chung .
Bước 7.3.3.1.2.1.1
Triệt tiêu thừa số chung.
Bước 7.3.3.1.2.1.2
Chia cho .
Bước 7.3.3.1.3
Rút gọn vế phải.
Bước 7.3.3.1.3.1
Chia cho .
Bước 7.3.3.2
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 7.3.3.3
Rút gọn .
Bước 7.3.3.3.1
Viết lại ở dạng .
Bước 7.3.3.3.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 7.3.3.3.3
Cộng hoặc trừ là .
Bước 8
Các điểm cực trị cần tính.
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Bước 10.1
Rút gọn mỗi số hạng.
Bước 10.1.1
Áp dụng quy tắc tích số cho .
Bước 10.1.2
Kết hợp và .
Bước 10.1.3
Nhân tử số với nghịch đảo của mẫu số.
Bước 10.1.4
Kết hợp và .
Bước 10.1.5
Áp dụng quy tắc tích số cho .
Bước 10.1.6
Kết hợp và .
Bước 10.1.7
Nhân tử số với nghịch đảo của mẫu số.
Bước 10.1.8
Kết hợp và .
Bước 10.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 10.3
Viết mỗi biểu thức với mẫu số chung là , bằng cách nhân từng biểu thức với một thừa số thích hợp của .
Bước 10.3.1
Nhân với .
Bước 10.3.2
Nhân với .
Bước 10.3.3
Nhân với bằng cách cộng các số mũ.
Bước 10.3.3.1
Di chuyển .
Bước 10.3.3.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 10.3.3.3
Kết hợp các tử số trên mẫu số chung.
Bước 10.3.3.4
Cộng và .
Bước 10.4
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Bước 10.4.1
Kết hợp các tử số trên mẫu số chung.
Bước 10.4.2
Triệt tiêu thừa số chung .
Bước 10.4.2.1
Triệt tiêu thừa số chung.
Bước 10.4.2.2
Viết lại biểu thức.
Bước 10.5
Rút gọn tử số.
Bước 10.5.1
Nhân .
Bước 10.5.1.1
Nhân với .
Bước 10.5.1.2
Nhân với bằng cách cộng các số mũ.
Bước 10.5.1.2.1
Nhân với .
Bước 10.5.1.2.1.1
Nâng lên lũy thừa .
Bước 10.5.1.2.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 10.5.1.2.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 10.5.1.2.3
Kết hợp các tử số trên mẫu số chung.
Bước 10.5.1.2.4
Cộng và .
Bước 10.5.2
Tính số mũ.
Bước 10.5.3
Di chuyển sang phía bên trái của .
Bước 10.5.4
Cộng và .
Bước 10.6
Đưa ra ngoài .
Bước 10.7
Triệt tiêu các thừa số chung.
Bước 10.7.1
Đưa ra ngoài .
Bước 10.7.2
Triệt tiêu thừa số chung.
Bước 10.7.3
Viết lại biểu thức.
Bước 10.8
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 10.9
Nhân với bằng cách cộng các số mũ.
Bước 10.9.1
Di chuyển .
Bước 10.9.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 10.9.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 10.9.4
Kết hợp và .
Bước 10.9.5
Kết hợp các tử số trên mẫu số chung.
Bước 10.9.6
Rút gọn tử số.
Bước 10.9.6.1
Nhân với .
Bước 10.9.6.2
Cộng và .
Bước 11
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 12
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Bước 12.2.1
Rút gọn mỗi số hạng.
Bước 12.2.1.1
Áp dụng quy tắc tích số cho .
Bước 12.2.1.2
Kết hợp và .
Bước 12.2.1.3
Áp dụng quy tắc tích số cho .
Bước 12.2.1.4
Nhân .
Bước 12.2.1.4.1
Kết hợp và .
Bước 12.2.1.4.2
Đưa dấu âm ra ngoài.
Bước 12.2.1.4.3
Nâng lên lũy thừa .
Bước 12.2.1.4.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 12.2.1.4.5
Viết ở dạng một phân số với một mẫu số chung.
Bước 12.2.1.4.6
Kết hợp các tử số trên mẫu số chung.
Bước 12.2.1.4.7
Cộng và .
Bước 12.2.1.5
Di chuyển dấu trừ ra phía trước của phân số.
Bước 12.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 12.2.3
Viết mỗi biểu thức với mẫu số chung là , bằng cách nhân từng biểu thức với một thừa số thích hợp của .
Bước 12.2.3.1
Nhân với .
Bước 12.2.3.2
Nhân với bằng cách cộng các số mũ.
Bước 12.2.3.2.1
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 12.2.3.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 12.2.3.2.3
Cộng và .
Bước 12.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 12.2.5
Rút gọn mỗi số hạng.
Bước 12.2.5.1
Triệt tiêu thừa số chung .
Bước 12.2.5.1.1
Triệt tiêu thừa số chung.
Bước 12.2.5.1.2
Viết lại biểu thức.
Bước 12.2.5.2
Rút gọn tử số.
Bước 12.2.5.2.1
Tính số mũ.
Bước 12.2.5.2.2
Nhân với .
Bước 12.2.5.2.3
Trừ khỏi .
Bước 12.2.5.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 12.2.6
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Bước 14.1
Rút gọn biểu thức.
Bước 14.1.1
Viết lại ở dạng .
Bước 14.1.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 14.2
Triệt tiêu thừa số chung .
Bước 14.2.1
Triệt tiêu thừa số chung.
Bước 14.2.2
Viết lại biểu thức.
Bước 14.3
Rút gọn biểu thức.
Bước 14.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 14.3.2
Nhân với .
Bước 14.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 14.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Không xác định
Bước 15
Bước 15.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 15.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 15.2.1
Thay thế biến bằng trong biểu thức.
Bước 15.2.2
Câu trả lời cuối cùng là .
Bước 15.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 15.3.1
Thay thế biến bằng trong biểu thức.
Bước 15.3.2
Rút gọn kết quả.
Bước 15.3.2.1
Rút gọn mỗi số hạng.
Bước 15.3.2.1.1
Nâng lên lũy thừa .
Bước 15.3.2.1.2
Nhân với .
Bước 15.3.2.1.3
Nâng lên lũy thừa .
Bước 15.3.2.1.4
Nhân với .
Bước 15.3.2.1.5
Chia cho .
Bước 15.3.2.1.6
Nhân với .
Bước 15.3.2.2
Trừ khỏi .
Bước 15.3.2.3
Câu trả lời cuối cùng là .
Bước 15.4
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 15.4.1
Thay thế biến bằng trong biểu thức.
Bước 15.4.2
Rút gọn kết quả.
Bước 15.4.2.1
Nhân với bằng cách cộng các số mũ.
Bước 15.4.2.1.1
Nhân với .
Bước 15.4.2.1.1.1
Nâng lên lũy thừa .
Bước 15.4.2.1.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 15.4.2.1.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 15.4.2.1.3
Kết hợp các tử số trên mẫu số chung.
Bước 15.4.2.1.4
Cộng và .
Bước 15.4.2.2
Câu trả lời cuối cùng là .
Bước 15.5
Vì đạo hàm bậc nhất không thay đổi dấu xung quanh , nên đây không phải là một cực đại địa phương hoặc cực tiểu địa phương.
Không phải là một cực đại địa phương hoặc cực tiểu địa phương
Bước 15.6
Vì đạo hàm bậc nhất đổi dấu từ âm sang dương xung quanh , nên là một cực tiểu địa phương.
là cực tiểu địa phương
là cực tiểu địa phương
Bước 16