Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương (16x^2+25)/x
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 2.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.2
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.4
Nhân với .
Bước 2.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.6
Cộng .
Bước 2.3
Nâng lên lũy thừa .
Bước 2.4
Nâng lên lũy thừa .
Bước 2.5
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.6
Cộng .
Bước 2.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.8
Nhân với .
Bước 2.9
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.9.1
Áp dụng thuộc tính phân phối.
Bước 2.9.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.9.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.9.2.1.1
Nhân với .
Bước 2.9.2.1.2
Nhân với .
Bước 2.9.2.2
Trừ khỏi .
Bước 2.9.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.9.3.1
Viết lại ở dạng .
Bước 2.9.3.2
Viết lại ở dạng .
Bước 2.9.3.3
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 3
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 3.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 3.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 3.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 3.2.2
Nhân với .
Bước 3.3
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 3.4
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 3.4.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.4.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.4.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.4.4
Nhân với .
Bước 3.4.5
là hằng số đối với , đạo hàm của đối với .
Bước 3.4.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 3.4.6.1
Cộng .
Bước 3.4.6.2
Di chuyển sang phía bên trái của .
Bước 3.4.7
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.4.8
không đổi đối với , nên đạo hàm của đối với .
Bước 3.4.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.4.10
Nhân với .
Bước 3.4.11
là hằng số đối với , đạo hàm của đối với .
Bước 3.4.12
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 3.4.12.1
Cộng .
Bước 3.4.12.2
Di chuyển sang phía bên trái của .
Bước 3.4.13
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.4.14
Rút gọn bằng cách đặt thừa số chung.
Nhấp để xem thêm các bước...
Bước 3.4.14.1
Nhân với .
Bước 3.4.14.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 3.4.14.2.1
Đưa ra ngoài .
Bước 3.4.14.2.2
Đưa ra ngoài .
Bước 3.4.14.2.3
Đưa ra ngoài .
Bước 3.5
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 3.5.1
Đưa ra ngoài .
Bước 3.5.2
Triệt tiêu thừa số chung.
Bước 3.5.3
Viết lại biểu thức.
Bước 3.6
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.6.1
Áp dụng thuộc tính phân phối.
Bước 3.6.2
Áp dụng thuộc tính phân phối.
Bước 3.6.3
Áp dụng thuộc tính phân phối.
Bước 3.6.4
Áp dụng thuộc tính phân phối.
Bước 3.6.5
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 3.6.5.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.1
Viết lại bằng tính chất giao hoán của phép nhân.
Bước 3.6.5.1.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.2.1
Di chuyển .
Bước 3.6.5.1.2.2
Nhân với .
Bước 3.6.5.1.3
Nhân với .
Bước 3.6.5.1.4
Nhân với .
Bước 3.6.5.1.5
Di chuyển sang phía bên trái của .
Bước 3.6.5.1.6
Viết lại bằng tính chất giao hoán của phép nhân.
Bước 3.6.5.1.7
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.7.1
Di chuyển .
Bước 3.6.5.1.7.2
Nhân với .
Bước 3.6.5.1.8
Nhân với .
Bước 3.6.5.1.9
Nhân với .
Bước 3.6.5.1.10
Di chuyển sang phía bên trái của .
Bước 3.6.5.1.11
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.11.1
Nhân với .
Bước 3.6.5.1.11.2
Nhân với .
Bước 3.6.5.1.12
Khai triển bằng cách sử dụng Phương pháp FOIL.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.12.1
Áp dụng thuộc tính phân phối.
Bước 3.6.5.1.12.2
Áp dụng thuộc tính phân phối.
Bước 3.6.5.1.12.3
Áp dụng thuộc tính phân phối.
Bước 3.6.5.1.13
Rút gọn và kết hợp các số hạng đồng dạng.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.13.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.13.1.1
Viết lại bằng tính chất giao hoán của phép nhân.
Bước 3.6.5.1.13.1.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 3.6.5.1.13.1.2.1
Di chuyển .
Bước 3.6.5.1.13.1.2.2
Nhân với .
Bước 3.6.5.1.13.1.3
Nhân với .
Bước 3.6.5.1.13.1.4
Nhân với .
Bước 3.6.5.1.13.1.5
Nhân với .
Bước 3.6.5.1.13.1.6
Nhân với .
Bước 3.6.5.1.13.2
Trừ khỏi .
Bước 3.6.5.1.13.3
Cộng .
Bước 3.6.5.2
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 3.6.5.2.1
Trừ khỏi .
Bước 3.6.5.2.2
Cộng .
Bước 3.6.5.3
Cộng .
Bước 3.6.5.4
Trừ khỏi .
Bước 3.6.5.5
Cộng .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 5.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 5.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 5.1.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 5.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.1.2.2
không đổi đối với , nên đạo hàm của đối với .
Bước 5.1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.2.4
Nhân với .
Bước 5.1.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 5.1.2.6
Cộng .
Bước 5.1.3
Nâng lên lũy thừa .
Bước 5.1.4
Nâng lên lũy thừa .
Bước 5.1.5
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.1.6
Cộng .
Bước 5.1.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.8
Nhân với .
Bước 5.1.9
Rút gọn.
Nhấp để xem thêm các bước...
Bước 5.1.9.1
Áp dụng thuộc tính phân phối.
Bước 5.1.9.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.1.9.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.1.9.2.1.1
Nhân với .
Bước 5.1.9.2.1.2
Nhân với .
Bước 5.1.9.2.2
Trừ khỏi .
Bước 5.1.9.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.1.9.3.1
Viết lại ở dạng .
Bước 5.1.9.3.2
Viết lại ở dạng .
Bước 5.1.9.3.3
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 5.2
Đạo hàm bậc nhất của đối với .
Bước 6
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 6.1
Cho đạo hàm bằng .
Bước 6.2
Cho tử bằng không.
Bước 6.3
Giải phương trình để tìm .
Nhấp để xem thêm các bước...
Bước 6.3.1
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 6.3.2
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 6.3.2.1
Đặt bằng với .
Bước 6.3.2.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 6.3.2.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 6.3.2.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.3.2.2.2.1
Chia mỗi số hạng trong cho .
Bước 6.3.2.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.3.2.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.3.2.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.3.2.2.2.2.1.2
Chia cho .
Bước 6.3.2.2.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.3.2.2.2.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 6.3.3
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 6.3.3.1
Đặt bằng với .
Bước 6.3.3.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 6.3.3.2.1
Cộng cho cả hai vế của phương trình.
Bước 6.3.3.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.3.3.2.2.1
Chia mỗi số hạng trong cho .
Bước 6.3.3.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.3.3.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.3.3.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.3.3.2.2.2.1.2
Chia cho .
Bước 6.3.4
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 7
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 7.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 7.2
Giải tìm .
Nhấp để xem thêm các bước...
Bước 7.2.1
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 7.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 7.2.2.1
Viết lại ở dạng .
Bước 7.2.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 7.2.2.3
Cộng hoặc trừ .
Bước 8
Các điểm cực trị cần tính.
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 10.1
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 10.1.1
Áp dụng quy tắc tích số cho .
Bước 10.1.2
Nâng lên lũy thừa .
Bước 10.1.3
Áp dụng quy tắc tích số cho .
Bước 10.1.4
Nâng lên lũy thừa .
Bước 10.1.5
Nâng lên lũy thừa .
Bước 10.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 10.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 10.3.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 10.3.2
Đưa ra ngoài .
Bước 10.3.3
Đưa ra ngoài .
Bước 10.3.4
Triệt tiêu thừa số chung.
Bước 10.3.5
Viết lại biểu thức.
Bước 10.4
Kết hợp .
Bước 10.5
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 10.5.1
Nhân với .
Bước 10.5.2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 11
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 12
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 12.2.1
Nhân tử số với nghịch đảo của mẫu số.
Bước 12.2.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 12.2.2.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 12.2.2.1.1
Áp dụng quy tắc tích số cho .
Bước 12.2.2.1.2
Áp dụng quy tắc tích số cho .
Bước 12.2.2.2
Nâng lên lũy thừa .
Bước 12.2.2.3
Nhân với .
Bước 12.2.2.4
Nâng lên lũy thừa .
Bước 12.2.2.5
Nâng lên lũy thừa .
Bước 12.2.2.6
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 12.2.2.6.1
Triệt tiêu thừa số chung.
Bước 12.2.2.6.2
Viết lại biểu thức.
Bước 12.2.3
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 12.2.3.1
Cộng .
Bước 12.2.3.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 12.2.3.2.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 12.2.3.2.2
Đưa ra ngoài .
Bước 12.2.3.2.3
Triệt tiêu thừa số chung.
Bước 12.2.3.2.4
Viết lại biểu thức.
Bước 12.2.3.3
Nhân với .
Bước 12.2.4
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 14.1
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 14.1.1
Áp dụng quy tắc tích số cho .
Bước 14.1.2
Nâng lên lũy thừa .
Bước 14.1.3
Nâng lên lũy thừa .
Bước 14.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 14.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 14.3.1
Đưa ra ngoài .
Bước 14.3.2
Đưa ra ngoài .
Bước 14.3.3
Triệt tiêu thừa số chung.
Bước 14.3.4
Viết lại biểu thức.
Bước 14.4
Kết hợp .
Bước 14.5
Nhân với .
Bước 15
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 16
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 16.2.1
Nhân tử số với nghịch đảo của mẫu số.
Bước 16.2.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 16.2.2.1
Áp dụng quy tắc tích số cho .
Bước 16.2.2.2
Nâng lên lũy thừa .
Bước 16.2.2.3
Nâng lên lũy thừa .
Bước 16.2.2.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 16.2.2.4.1
Triệt tiêu thừa số chung.
Bước 16.2.2.4.2
Viết lại biểu thức.
Bước 16.2.3
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 16.2.3.1
Cộng .
Bước 16.2.3.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 16.2.3.2.1
Đưa ra ngoài .
Bước 16.2.3.2.2
Triệt tiêu thừa số chung.
Bước 16.2.3.2.3
Viết lại biểu thức.
Bước 16.2.3.3
Nhân với .
Bước 16.2.4
Câu trả lời cuối cùng là .
Bước 17
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
là một cực tiểu địa phương
Bước 18