Giải tích Ví dụ

Tìm Các Đường Tiệm Cận y=5csc(3/2x+pi/2)-2
Bước 1
Kết hợp .
Bước 2
Đối với bất kỳ , các tiệm cận đứng xảy ra tại , trong đó là một số nguyên. Sử dụng chu kì cơ bản cho , , để tìm các tiệm cận đứng cho . Đặt phần bên trong của hàm cosecant, , cho bằng để nơi tiệm cận đứng xảy ra cho .
Bước 3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Trừ khỏi cả hai vế của phương trình.
Bước 3.2
Vì biểu thức trên mỗi vế của phương trình có mẫu số giống nhau, nên tử số phải bằng nhau.
Bước 3.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.3.1
Chia mỗi số hạng trong cho .
Bước 3.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.3.2.1.1
Triệt tiêu thừa số chung.
Bước 3.3.2.1.2
Chia cho .
Bước 3.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.3.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4
Đặt phần bên trong hàm cosecant bằng .
Bước 5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 5.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.1.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 5.1.3
Kết hợp .
Bước 5.1.4
Kết hợp các tử số trên mẫu số chung.
Bước 5.1.5
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.1.5.1
Nhân với .
Bước 5.1.5.2
Trừ khỏi .
Bước 5.2
Vì biểu thức trên mỗi vế của phương trình có mẫu số giống nhau, nên tử số phải bằng nhau.
Bước 5.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 5.3.1
Chia mỗi số hạng trong cho .
Bước 5.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.3.2.1.1
Triệt tiêu thừa số chung.
Bước 5.3.2.1.2
Chia cho .
Bước 5.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.3.3.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.3.3.1.1
Triệt tiêu thừa số chung.
Bước 5.3.3.1.2
Chia cho .
Bước 6
Chu kỳ cơ bản cho sẽ xảy ra tại , nơi là các tiệm cận đứng.
Bước 7
Tìm chu kỳ để tìm nơi các tiệm cận đứng tồn tại. Tiệm cận đứng xảy ra mỗi nửa chu kỳ.
Nhấp để xem thêm các bước...
Bước 7.1
xấp xỉ , là một số dương, nên ta loại bỏ dấu giá trị tuyệt đối
Bước 7.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 7.3
Nhân .
Nhấp để xem thêm các bước...
Bước 7.3.1
Kết hợp .
Bước 7.3.2
Nhân với .
Bước 7.3.3
Kết hợp .
Bước 8
Các tiệm cận đứng cho xảy ra tại , và mỗi , trong đó là một số nguyên. Đây là nửa chu kỳ.
Bước 9
Cosecant chỉ có các tiệm cận đứng.
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Bước 10