Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Quy Tắc L'Hôpital giới hạn khi x tiến dần đến 0 từ phía bên phải của (3(e^x-1-x))/(10x^3)
Bước 1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.2
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.3
Đưa giới hạn vào trong số mũ.
Bước 1.2.4
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.5
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Bước 1.2.5.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.5.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.6
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.2.6.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.6.1.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 1.2.6.1.2
Nhân với .
Bước 1.2.6.2
Trừ khỏi .
Bước 1.2.6.3
Cộng .
Bước 1.2.6.4
Nhân với .
Bước 1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.1.2
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.3.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.3.2
Nhân với .
Bước 1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 3.5
là hằng số đối với , đạo hàm của đối với .
Bước 3.6
Cộng .
Bước 3.7
không đổi đối với , nên đạo hàm của đối với .
Bước 3.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.9
Nhân với .
Bước 3.10
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.10.1
Áp dụng thuộc tính phân phối.
Bước 3.10.2
Nhân với .
Bước 3.11
không đổi đối với , nên đạo hàm của đối với .
Bước 3.12
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.13
Nhân với .
Bước 4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 4.1
Đưa ra ngoài .
Bước 4.2
Đưa ra ngoài .
Bước 4.3
Đưa ra ngoài .
Bước 4.4
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 4.4.1
Đưa ra ngoài .
Bước 4.4.2
Triệt tiêu thừa số chung.
Bước 4.4.3
Viết lại biểu thức.
Bước 5
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 5.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 5.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 5.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 5.1.2.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 5.1.2.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.1.2.1.2
Đưa giới hạn vào trong số mũ.
Bước 5.1.2.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 5.1.2.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.1.2.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.1.2.3.1.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 5.1.2.3.1.2
Nhân với .
Bước 5.1.2.3.2
Trừ khỏi .
Bước 5.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 5.1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 5.1.3.1.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 5.1.3.1.2
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 5.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 5.1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.1.3.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 5.1.3.3.2
Nhân với .
Bước 5.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 5.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 5.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 5.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 5.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 5.3.1
Tính đạo hàm tử số và mẫu số.
Bước 5.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 5.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 5.3.5
Cộng .
Bước 5.3.6
không đổi đối với , nên đạo hàm của đối với .
Bước 5.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.3.8
Nhân với .
Bước 6
Vì tử số dương và mẫu số tiến dần đến 0 và lớn hơn 0 đối với gần ở bên phải, nên hàm số tăng không giới hạn.