Giải tích Ví dụ

Tìm Giá Trị Cực Đại/Cực Tiểu -sin(x)^2+cos(x)^2
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.2.3
Đạo hàm của đối với .
Bước 1.2.4
Nhân với .
Bước 1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.2
Đạo hàm của đối với .
Bước 1.3.3
Nhân với .
Bước 1.4
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.1
Sắp xếp lại các thừa số của .
Bước 1.4.2
Trừ khỏi .
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 2.3
Đạo hàm của đối với .
Bước 2.4
Nâng lên lũy thừa .
Bước 2.5
Nâng lên lũy thừa .
Bước 2.6
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.7
Cộng .
Bước 2.8
Đạo hàm của đối với .
Bước 2.9
Nâng lên lũy thừa .
Bước 2.10
Nâng lên lũy thừa .
Bước 2.11
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.12
Cộng .
Bước 2.13
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.13.1
Áp dụng thuộc tính phân phối.
Bước 2.13.2
Nhân với .
Bước 2.13.3
Viết lại ở dạng .
Bước 2.13.4
Viết lại ở dạng .
Bước 2.13.5
Sắp xếp lại .
Bước 2.13.6
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 2.13.7
Nhân với .
Bước 2.13.8
Khai triển bằng cách sử dụng Phương pháp FOIL.
Nhấp để xem thêm các bước...
Bước 2.13.8.1
Áp dụng thuộc tính phân phối.
Bước 2.13.8.2
Áp dụng thuộc tính phân phối.
Bước 2.13.8.3
Áp dụng thuộc tính phân phối.
Bước 2.13.9
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 2.13.9.1
Sắp xếp lại các thừa số trong các số hạng .
Bước 2.13.9.2
Cộng .
Bước 2.13.9.3
Cộng .
Bước 2.13.10
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.13.10.1
Nhân .
Nhấp để xem thêm các bước...
Bước 2.13.10.1.1
Nhân với .
Bước 2.13.10.1.2
Nâng lên lũy thừa .
Bước 2.13.10.1.3
Nâng lên lũy thừa .
Bước 2.13.10.1.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.13.10.1.5
Cộng .
Bước 2.13.10.2
Nhân .
Nhấp để xem thêm các bước...
Bước 2.13.10.2.1
Nhân với .
Bước 2.13.10.2.2
Nâng lên lũy thừa .
Bước 2.13.10.2.3
Nâng lên lũy thừa .
Bước 2.13.10.2.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.13.10.2.5
Cộng .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Đặt bằng với .
Bước 5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 5.2.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 5.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.2.2.1
Giá trị chính xác của .
Bước 5.2.3
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 5.2.4
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.2.4.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 5.2.4.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 5.2.4.2.1
Kết hợp .
Bước 5.2.4.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 5.2.4.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.2.4.3.1
Nhân với .
Bước 5.2.4.3.2
Trừ khỏi .
Bước 5.2.5
Đáp án của phương trình .
Bước 6
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 6.1
Đặt bằng với .
Bước 6.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 6.2.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 6.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.2.2.1
Giá trị chính xác của .
Bước 6.2.3
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 6.2.4
Trừ khỏi .
Bước 6.2.5
Đáp án của phương trình .
Bước 7
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.1
Giá trị chính xác của .
Bước 9.1.2
Một mũ bất kỳ số nào là một.
Bước 9.1.3
Nhân với .
Bước 9.1.4
Giá trị chính xác của .
Bước 9.1.5
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.1.6
Nhân với .
Bước 9.2
Cộng .
Bước 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 11
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 11.2.1
Sắp xếp lại .
Bước 11.2.2
Áp dụng đẳng thức góc nhân đôi cho cosin.
Bước 11.2.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 11.2.3.1
Triệt tiêu thừa số chung.
Bước 11.2.3.2
Viết lại biểu thức.
Bước 11.2.4
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì cosin âm trong góc phần tư thứ hai.
Bước 11.2.5
Giá trị chính xác của .
Bước 11.2.6
Nhân với .
Bước 11.2.7
Câu trả lời cuối cùng là .
Bước 12
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 13
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 13.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 13.1.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì sin âm trong góc phần tư thứ tư.
Bước 13.1.2
Giá trị chính xác của .
Bước 13.1.3
Nhân với .
Bước 13.1.4
Nâng lên lũy thừa .
Bước 13.1.5
Nhân với .
Bước 13.1.6
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 13.1.7
Giá trị chính xác của .
Bước 13.1.8
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 13.1.9
Nhân với .
Bước 13.2
Cộng .
Bước 14
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 15
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 15.1
Thay thế biến bằng trong biểu thức.
Bước 15.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 15.2.1
Sắp xếp lại .
Bước 15.2.2
Áp dụng đẳng thức góc nhân đôi cho cosin.
Bước 15.2.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 15.2.3.1
Triệt tiêu thừa số chung.
Bước 15.2.3.2
Viết lại biểu thức.
Bước 15.2.4
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 15.2.5
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì cosin âm trong góc phần tư thứ hai.
Bước 15.2.6
Giá trị chính xác của .
Bước 15.2.7
Nhân với .
Bước 15.2.8
Câu trả lời cuối cùng là .
Bước 16
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 17
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 17.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 17.1.1
Giá trị chính xác của .
Bước 17.1.2
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 17.1.3
Nhân với .
Bước 17.1.4
Giá trị chính xác của .
Bước 17.1.5
Một mũ bất kỳ số nào là một.
Bước 17.1.6
Nhân với .
Bước 17.2
Trừ khỏi .
Bước 18
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 19
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 19.1
Thay thế biến bằng trong biểu thức.
Bước 19.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 19.2.1
Sắp xếp lại .
Bước 19.2.2
Áp dụng đẳng thức góc nhân đôi cho cosin.
Bước 19.2.3
Nhân với .
Bước 19.2.4
Giá trị chính xác của .
Bước 19.2.5
Câu trả lời cuối cùng là .
Bước 20
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 21
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 21.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 21.1.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 21.1.2
Giá trị chính xác của .
Bước 21.1.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 21.1.4
Nhân với .
Bước 21.1.5
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì cosin âm trong góc phần tư thứ hai.
Bước 21.1.6
Giá trị chính xác của .
Bước 21.1.7
Nhân với .
Bước 21.1.8
Nâng lên lũy thừa .
Bước 21.1.9
Nhân với .
Bước 21.2
Trừ khỏi .
Bước 22
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 23
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 23.1
Thay thế biến bằng trong biểu thức.
Bước 23.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 23.2.1
Sắp xếp lại .
Bước 23.2.2
Áp dụng đẳng thức góc nhân đôi cho cosin.
Bước 23.2.3
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 23.2.4
Giá trị chính xác của .
Bước 23.2.5
Câu trả lời cuối cùng là .
Bước 24
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
là một cực tiểu địa phương
là một cực đại địa phuơng
là một cực đại địa phuơng
Bước 25