Giải tích Ví dụ

Tìm Nguyên Hàm cos(pix)+6sin(x/6)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia tích phân đơn thành nhiều tích phân.
Bước 5
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 5.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 5.1.1
Tính đạo hàm .
Bước 5.1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 5.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.4
Nhân với .
Bước 5.2
Viết lại bài tập bằng cách dùng .
Bước 6
Kết hợp .
Bước 7
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 8
Tích phân của đối với .
Bước 9
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 10
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 10.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 10.1.1
Tính đạo hàm .
Bước 10.1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 10.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 10.1.4
Nhân với .
Bước 10.2
Viết lại bài tập bằng cách dùng .
Bước 11
Rút gọn.
Nhấp để xem thêm các bước...
Bước 11.1
Nhân với nghịch đảo của phân số để chia cho .
Bước 11.2
Nhân với .
Bước 11.3
Di chuyển sang phía bên trái của .
Bước 12
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13
Nhân với .
Bước 14
Tích phân của đối với .
Bước 15
Rút gọn.
Nhấp để xem thêm các bước...
Bước 15.1
Rút gọn.
Bước 15.2
Nhân với .
Bước 16
Thay trở lại cho mỗi biến thay thế tích phân.
Nhấp để xem thêm các bước...
Bước 16.1
Thay thế tất cả các lần xuất hiện của với .
Bước 16.2
Thay thế tất cả các lần xuất hiện của với .
Bước 17
Sắp xếp lại các số hạng.
Bước 18
Câu trả lời là nguyên hàm của hàm số .