Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Bước 1.2.1
Chuyển giới hạn vào bên trong logarit.
Bước 1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.3
Logarit cơ số của là .
Bước 1.3
Tính giới hạn của mẫu số.
Bước 1.3.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.3.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.3
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.3.4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.3.6
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Bước 1.3.6.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.6.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.7
Rút gọn kết quả.
Bước 1.3.7.1
Rút gọn mỗi số hạng.
Bước 1.3.7.1.1
Một mũ bất kỳ số nào là một.
Bước 1.3.7.1.2
Nhân với .
Bước 1.3.7.1.3
Nhân với .
Bước 1.3.7.1.4
Nhân với .
Bước 1.3.7.2
Cộng và .
Bước 1.3.7.3
Trừ khỏi .
Bước 1.3.7.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.3.8
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Đạo hàm của đối với là .
Bước 3.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.4
Tính .
Bước 3.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.4.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.4.3
Nhân với .
Bước 3.5
Tính .
Bước 3.5.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.5.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.5.3
Nhân với .
Bước 3.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.7
Cộng và .
Bước 4
Nhân tử số với nghịch đảo của mẫu số.
Bước 5
Nhân với .
Bước 6
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 7
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 8
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 9
Tách giới hạn bằng quy tắc tích của giới hạn trên giới hạn khi tiến dần đến .
Bước 10
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 11
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 12
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 13
Bước 13.1
Tính giới hạn của bằng cách điền vào cho .
Bước 13.2
Tính giới hạn của bằng cách điền vào cho .
Bước 14
Bước 14.1
Triệt tiêu thừa số chung .
Bước 14.1.1
Triệt tiêu thừa số chung.
Bước 14.1.2
Viết lại biểu thức.
Bước 14.2
Rút gọn mẫu số.
Bước 14.2.1
Nhân với .
Bước 14.2.2
Cộng và .
Bước 14.3
Nhân với .
Bước 14.4
Di chuyển sang phía bên trái của .