Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.2.5
Cộng và .
Bước 2.2.6
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3
Nhân với .
Bước 2.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 2.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.4.2
Cộng và .
Bước 3
Bước 3.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.2
Tính .
Bước 3.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 3.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.2.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.2.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.2.6
Cộng và .
Bước 3.2.7
Nhân với .
Bước 3.2.8
Nhân với .
Bước 3.3
Tìm đạo hàm bằng quy tắc hằng số.
Bước 3.3.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.3.2
Cộng và .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Bước 5.1
Tìm đạo hàm bậc một.
Bước 5.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.1.2
Tính .
Bước 5.1.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 5.1.2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 5.1.2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 5.1.2.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.2.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.1.2.5
Cộng và .
Bước 5.1.2.6
Nhân với .
Bước 5.1.3
Tính .
Bước 5.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.3.3
Nhân với .
Bước 5.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 5.1.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.1.4.2
Cộng và .
Bước 5.2
Đạo hàm bậc nhất của đối với là .
Bước 6
Bước 6.1
Cho đạo hàm bằng .
Bước 6.2
Rút gọn .
Bước 6.2.1
Rút gọn mỗi số hạng.
Bước 6.2.1.1
Sử dụng định lý nhị thức.
Bước 6.2.1.2
Rút gọn mỗi số hạng.
Bước 6.2.1.2.1
Nhân với .
Bước 6.2.1.2.2
Một mũ bất kỳ số nào là một.
Bước 6.2.1.2.3
Nhân với .
Bước 6.2.1.2.4
Một mũ bất kỳ số nào là một.
Bước 6.2.1.2.5
Nhân với .
Bước 6.2.1.2.6
Một mũ bất kỳ số nào là một.
Bước 6.2.1.2.7
Nhân với .
Bước 6.2.1.2.8
Một mũ bất kỳ số nào là một.
Bước 6.2.1.2.9
Nhân với .
Bước 6.2.1.2.10
Một mũ bất kỳ số nào là một.
Bước 6.2.1.3
Áp dụng thuộc tính phân phối.
Bước 6.2.1.4
Rút gọn.
Bước 6.2.1.4.1
Nhân với .
Bước 6.2.1.4.2
Nhân với .
Bước 6.2.1.4.3
Nhân với .
Bước 6.2.1.4.4
Nhân với .
Bước 6.2.1.4.5
Nhân với .
Bước 6.2.1.4.6
Nhân với .
Bước 6.2.2
Kết hợp các số hạng đối nhau trong .
Bước 6.2.2.1
Trừ khỏi .
Bước 6.2.2.2
Cộng và .
Bước 6.3
Vẽ đồ thị mỗi vế của phương trình. nghiệm là giá trị x của giao điểm.
Bước 7
Bước 7.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 8
Các điểm cực trị cần tính.
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Bước 10.1
Cộng và .
Bước 10.2
Nâng lên lũy thừa .
Bước 10.3
Nhân với .
Bước 11
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 12
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Bước 12.2.1
Rút gọn mỗi số hạng.
Bước 12.2.1.1
Cộng và .
Bước 12.2.1.2
Nâng lên lũy thừa .
Bước 12.2.1.3
Nhân với .
Bước 12.2.2
Rút gọn bằng cách cộng và trừ.
Bước 12.2.2.1
Cộng và .
Bước 12.2.2.2
Trừ khỏi .
Bước 12.2.3
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Bước 14.1
Cộng và .
Bước 14.2
Một mũ bất kỳ số nào là một.
Bước 14.3
Nhân với .
Bước 15
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 16
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Bước 16.2.1
Rút gọn mỗi số hạng.
Bước 16.2.1.1
Cộng và .
Bước 16.2.1.2
Một mũ bất kỳ số nào là một.
Bước 16.2.1.3
Nhân với .
Bước 16.2.2
Rút gọn bằng cách cộng và trừ.
Bước 16.2.2.1
Cộng và .
Bước 16.2.2.2
Trừ khỏi .
Bước 16.2.3
Câu trả lời cuối cùng là .
Bước 17
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
là một cực tiểu địa phương
Bước 18