Giải tích Ví dụ

Tìm Nguyên Hàm 5x^4-2x^5
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia tích phân đơn thành nhiều tích phân.
Bước 5
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 6
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 7
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 8
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 9
Rút gọn.
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn.
Bước 9.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 9.2.1
Kết hợp .
Bước 9.2.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.2.2.1
Triệt tiêu thừa số chung.
Bước 9.2.2.2
Viết lại biểu thức.
Bước 9.2.3
Nhân với .
Bước 9.2.4
Kết hợp .
Bước 9.2.5
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 9.2.5.1
Đưa ra ngoài .
Bước 9.2.5.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 9.2.5.2.1
Đưa ra ngoài .
Bước 9.2.5.2.2
Triệt tiêu thừa số chung.
Bước 9.2.5.2.3
Viết lại biểu thức.
Bước 9.2.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 10
Câu trả lời là nguyên hàm của hàm số .