Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Đạo hàm của đối với là .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Rút gọn.
Bước 1.4.1
Sắp xếp lại các số hạng.
Bước 1.4.2
Sắp xếp lại và .
Bước 1.4.3
Áp dụng đẳng thức pytago.
Bước 2
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2
Đạo hàm của đối với là .
Bước 2.3
Sắp xếp lại các thừa số của .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 5
Bước 5.1
Viết lại ở dạng .
Bước 5.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 5.3
Cộng hoặc trừ là .
Bước 6
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 7
Bước 7.1
Giá trị chính xác của là .
Bước 8
Hàm tang dương trong góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy cộng góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 9
Cộng và .
Bước 10
Đáp án của phương trình .
Bước 11
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 12
Bước 12.1
Giá trị chính xác của là .
Bước 12.2
Một mũ bất kỳ số nào là một.
Bước 12.3
Nhân với .
Bước 12.4
Giá trị chính xác của là .
Bước 12.5
Nhân với .
Bước 13
Vì phép kiểm định đạo hàm bậc nhất thất bại, nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 14