Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương f(x)=tan(x)-x
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Đạo hàm của đối với .
Bước 1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.1
Sắp xếp lại các số hạng.
Bước 1.4.2
Sắp xếp lại .
Bước 1.4.3
Áp dụng đẳng thức pytago.
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2
Đạo hàm của đối với .
Bước 2.3
Sắp xếp lại các thừa số của .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.1
Viết lại ở dạng .
Bước 5.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 5.3
Cộng hoặc trừ .
Bước 6
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 7
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 7.1
Giá trị chính xác của .
Bước 8
Hàm tang dương trong góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy cộng góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 9
Cộng .
Bước 10
Đáp án của phương trình .
Bước 11
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 12
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 12.1
Giá trị chính xác của .
Bước 12.2
Một mũ bất kỳ số nào là một.
Bước 12.3
Nhân với .
Bước 12.4
Giá trị chính xác của .
Bước 12.5
Nhân với .
Bước 13
Vì phép kiểm định đạo hàm bậc nhất thất bại, nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 14