Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm.
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Đạo hàm của đối với là .
Bước 1.2.3
Nhân với .
Bước 2
Bước 2.1
Tìm đạo hàm.
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.1.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Đạo hàm của đối với là .
Bước 2.3
Trừ khỏi .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Trừ khỏi cả hai vế của phương trình.
Bước 5
Bước 5.1
Chia mỗi số hạng trong cho .
Bước 5.2
Rút gọn vế trái.
Bước 5.2.1
Triệt tiêu thừa số chung .
Bước 5.2.1.1
Triệt tiêu thừa số chung.
Bước 5.2.1.2
Chia cho .
Bước 5.3
Rút gọn vế phải.
Bước 5.3.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 6
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 7
Bước 7.1
Tính .
Bước 8
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 9
Bước 9.1
Loại bỏ các dấu ngoặc đơn.
Bước 9.2
Loại bỏ các dấu ngoặc đơn.
Bước 9.3
Trừ khỏi .
Bước 10
Đáp án của phương trình .
Bước 11
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 12
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 13
Bước 13.1
Thay thế biến bằng trong biểu thức.
Bước 13.2
Rút gọn kết quả.
Bước 13.2.1
Cộng và .
Bước 13.2.2
Câu trả lời cuối cùng là .
Bước 14
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 15
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 16
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Bước 16.2.1
Cộng và .
Bước 16.2.2
Câu trả lời cuối cùng là .
Bước 17
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
là một cực tiểu địa phương
Bước 18