Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương r(x)=(40000+10000/3x)(30-x)+(40000+10000/3x)(6.00)
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Tính đạo hàm bằng quy tắc tổng.
Nhấp để xem thêm các bước...
Bước 1.1.1
Kết hợp .
Bước 1.1.2
Kết hợp .
Bước 1.1.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 1.2.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2.3
là hằng số đối với , đạo hàm của đối với .
Bước 1.2.4
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2.7
là hằng số đối với , đạo hàm của đối với .
Bước 1.2.8
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.10
Nhân với .
Bước 1.2.11
Trừ khỏi .
Bước 1.2.12
Di chuyển sang phía bên trái của .
Bước 1.2.13
Viết lại ở dạng .
Bước 1.2.14
Nhân với .
Bước 1.2.15
Cộng .
Bước 1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.1
Di chuyển sang phía bên trái của .
Bước 1.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.5
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.7
Nhân với .
Bước 1.3.8
Cộng .
Bước 1.3.9
Kết hợp .
Bước 1.3.10
Nhân với .
Bước 1.3.11
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 1.3.11.1
Đưa ra ngoài .
Bước 1.3.11.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.3.11.2.1
Đưa ra ngoài .
Bước 1.3.11.2.2
Triệt tiêu thừa số chung.
Bước 1.3.11.2.3
Viết lại biểu thức.
Bước 1.3.11.2.4
Chia cho .
Bước 1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.1
Áp dụng thuộc tính phân phối.
Bước 1.4.2
Áp dụng thuộc tính phân phối.
Bước 1.4.3
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.3.1
Nhân với .
Bước 1.4.3.2
Kết hợp .
Bước 1.4.3.3
Nhân với .
Bước 1.4.3.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 1.4.3.4.1
Đưa ra ngoài .
Bước 1.4.3.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.4.3.4.2.1
Đưa ra ngoài .
Bước 1.4.3.4.2.2
Triệt tiêu thừa số chung.
Bước 1.4.3.4.2.3
Viết lại biểu thức.
Bước 1.4.3.4.2.4
Chia cho .
Bước 1.4.3.5
Kết hợp .
Bước 1.4.3.6
Cộng .
Bước 1.4.3.7
Trừ khỏi .
Bước 1.4.3.8
Kết hợp .
Bước 1.4.3.9
Nhân với .
Bước 1.4.3.10
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.4.3.11
Cộng .
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3
Nhân với .
Bước 2.3
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 2.3.1
là hằng số đối với , đạo hàm của đối với .
Bước 2.3.2
Cộng .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
Tính đạo hàm bằng quy tắc tổng.
Nhấp để xem thêm các bước...
Bước 4.1.1.1
Kết hợp .
Bước 4.1.1.2
Kết hợp .
Bước 4.1.1.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 4.1.2.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2.3
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.2.4
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.2.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2.7
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.2.8
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.2.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.2.10
Nhân với .
Bước 4.1.2.11
Trừ khỏi .
Bước 4.1.2.12
Di chuyển sang phía bên trái của .
Bước 4.1.2.13
Viết lại ở dạng .
Bước 4.1.2.14
Nhân với .
Bước 4.1.2.15
Cộng .
Bước 4.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 4.1.3.1
Di chuyển sang phía bên trái của .
Bước 4.1.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.3.5
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.3.7
Nhân với .
Bước 4.1.3.8
Cộng .
Bước 4.1.3.9
Kết hợp .
Bước 4.1.3.10
Nhân với .
Bước 4.1.3.11
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 4.1.3.11.1
Đưa ra ngoài .
Bước 4.1.3.11.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 4.1.3.11.2.1
Đưa ra ngoài .
Bước 4.1.3.11.2.2
Triệt tiêu thừa số chung.
Bước 4.1.3.11.2.3
Viết lại biểu thức.
Bước 4.1.3.11.2.4
Chia cho .
Bước 4.1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.4.1
Áp dụng thuộc tính phân phối.
Bước 4.1.4.2
Áp dụng thuộc tính phân phối.
Bước 4.1.4.3
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.4.3.1
Nhân với .
Bước 4.1.4.3.2
Kết hợp .
Bước 4.1.4.3.3
Nhân với .
Bước 4.1.4.3.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 4.1.4.3.4.1
Đưa ra ngoài .
Bước 4.1.4.3.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 4.1.4.3.4.2.1
Đưa ra ngoài .
Bước 4.1.4.3.4.2.2
Triệt tiêu thừa số chung.
Bước 4.1.4.3.4.2.3
Viết lại biểu thức.
Bước 4.1.4.3.4.2.4
Chia cho .
Bước 4.1.4.3.5
Kết hợp .
Bước 4.1.4.3.6
Cộng .
Bước 4.1.4.3.7
Trừ khỏi .
Bước 4.1.4.3.8
Kết hợp .
Bước 4.1.4.3.9
Nhân với .
Bước 4.1.4.3.10
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.1.4.3.11
Cộng .
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Trừ khỏi cả hai vế của phương trình.
Bước 5.3
Nhân cả hai vế của phương trình với .
Bước 5.4
Rút gọn cả hai vế của phương trình.
Nhấp để xem thêm các bước...
Bước 5.4.1
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.4.1.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.4.1.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.4.1.1.1.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 5.4.1.1.1.2
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 5.4.1.1.1.3
Đưa ra ngoài .
Bước 5.4.1.1.1.4
Triệt tiêu thừa số chung.
Bước 5.4.1.1.1.5
Viết lại biểu thức.
Bước 5.4.1.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.4.1.1.2.1
Đưa ra ngoài .
Bước 5.4.1.1.2.2
Triệt tiêu thừa số chung.
Bước 5.4.1.1.2.3
Viết lại biểu thức.
Bước 5.4.1.1.3
Nhân.
Nhấp để xem thêm các bước...
Bước 5.4.1.1.3.1
Nhân với .
Bước 5.4.1.1.3.2
Nhân với .
Bước 5.4.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.4.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.4.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.4.2.1.1.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 5.4.2.1.1.2
Đưa ra ngoài .
Bước 5.4.2.1.1.3
Triệt tiêu thừa số chung.
Bước 5.4.2.1.1.4
Viết lại biểu thức.
Bước 5.4.2.1.2
Nhân với .
Bước 6
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 10
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 10.1
Thay thế biến bằng trong biểu thức.
Bước 10.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 10.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 10.2.1.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 10.2.1.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 10.2.1.1.1.1
Đưa ra ngoài .
Bước 10.2.1.1.1.2
Triệt tiêu thừa số chung.
Bước 10.2.1.1.1.3
Viết lại biểu thức.
Bước 10.2.1.1.2
Nhân với .
Bước 10.2.1.2
Cộng .
Bước 10.2.1.3
Nhân với .
Bước 10.2.1.4
Trừ khỏi .
Bước 10.2.1.5
Nhân với .
Bước 10.2.1.6
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 10.2.1.6.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 10.2.1.6.1.1
Đưa ra ngoài .
Bước 10.2.1.6.1.2
Triệt tiêu thừa số chung.
Bước 10.2.1.6.1.3
Viết lại biểu thức.
Bước 10.2.1.6.2
Nhân với .
Bước 10.2.1.7
Cộng .
Bước 10.2.1.8
Nhân với .
Bước 10.2.2
Cộng .
Bước 10.2.3
Câu trả lời cuối cùng là .
Bước 11
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
Bước 12