Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Đạo hàm của đối với là .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.2.2
Đạo hàm của đối với là .
Bước 1.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.5
Nhân với .
Bước 1.3.6
Nhân với .
Bước 1.3.7
Nhân với .
Bước 1.4
Tính .
Bước 1.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.4.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.4.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.4.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 1.4.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.4.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.4.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.4.5
Nhân với .
Bước 1.4.6
Di chuyển sang phía bên trái của .
Bước 1.5
Rút gọn.
Bước 1.5.1
Sắp xếp lại các số hạng.
Bước 1.5.2
Sắp xếp lại các thừa số trong .
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Đạo hàm của đối với là .
Bước 2.2.3
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.2.2
Đạo hàm của đối với là .
Bước 2.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.5
Nhân với .
Bước 2.3.6
Di chuyển sang phía bên trái của .
Bước 2.3.7
Nhân với .
Bước 2.4
Tính .
Bước 2.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.4.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.4.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.4.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 2.4.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.4.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.4.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4.5
Nhân với .
Bước 2.4.6
Di chuyển sang phía bên trái của .
Bước 2.4.7
Nhân với .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 5
Bước 5.1
Rút gọn mỗi số hạng.
Bước 5.1.1
Giá trị chính xác của là .
Bước 5.1.2
Nhân với .
Bước 5.1.3
Nhân với .
Bước 5.1.4
Nhân với .
Bước 5.1.5
Giá trị chính xác của là .
Bước 5.1.6
Nhân với .
Bước 5.1.7
Nhân với .
Bước 5.1.8
Bất kỳ đại lượng nào mũ lên đều là .
Bước 5.1.9
Nhân với .
Bước 5.2
Cộng và .
Bước 6
Vì phép kiểm định đạo hàm bậc nhất thất bại, nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 7