Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bằng cách sử dụng Quy tắc nhân với hằng số.
Bước 1.1.1
Nâng lên lũy thừa .
Bước 1.1.2
Rút gọn biểu thức.
Bước 1.1.2.1
Nhân với .
Bước 1.1.2.2
Trừ khỏi .
Bước 1.1.3
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng là trong đó và .
Bước 1.3
Tìm đạo hàm.
Bước 1.3.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.4
Nhân với .
Bước 1.3.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.6
Rút gọn biểu thức.
Bước 1.3.6.1
Cộng và .
Bước 1.3.6.2
Di chuyển sang phía bên trái của .
Bước 1.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.8
Kết hợp các phân số.
Bước 1.3.8.1
Nhân với .
Bước 1.3.8.2
Nhân với .
Bước 1.4
Rút gọn.
Bước 1.4.1
Áp dụng thuộc tính phân phối.
Bước 1.4.2
Rút gọn tử số.
Bước 1.4.2.1
Rút gọn mỗi số hạng.
Bước 1.4.2.1.1
Nhân với .
Bước 1.4.2.1.2
Nhân với .
Bước 1.4.2.2
Trừ khỏi .
Bước 1.4.2.3
Cộng và .
Bước 1.4.3
Đưa ra ngoài .
Bước 1.4.4
Đưa ra ngoài .
Bước 1.4.5
Tách các phân số.
Bước 1.4.6
Chia cho .
Bước 1.4.7
Kết hợp và .
Bước 2
Bước 2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2
Áp dụng các quy tắc số mũ cơ bản.
Bước 2.2.1
Viết lại ở dạng .
Bước 2.2.2
Nhân các số mũ trong .
Bước 2.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.2.2.2
Nhân với .
Bước 2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4
Nhân với .
Bước 2.5
Rút gọn.
Bước 2.5.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.5.2
Kết hợp các số hạng.
Bước 2.5.2.1
Kết hợp và .
Bước 2.5.2.2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Vì không có giá trị nào của làm cho đạo hàm bậc nhất bằng , nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 5
Không có cực trị địa phương
Bước 6