Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.3
Kết hợp và .
Bước 1.4
Kết hợp các tử số trên mẫu số chung.
Bước 1.5
Rút gọn tử số.
Bước 1.5.1
Nhân với .
Bước 1.5.2
Trừ khỏi .
Bước 1.6
Kết hợp và .
Bước 2
Bước 2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.4
Kết hợp và .
Bước 2.5
Kết hợp các tử số trên mẫu số chung.
Bước 2.6
Rút gọn tử số.
Bước 2.6.1
Nhân với .
Bước 2.6.2
Trừ khỏi .
Bước 2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.8
Kết hợp và .
Bước 2.9
Nhân với .
Bước 2.10
Nhân.
Bước 2.10.1
Nhân với .
Bước 2.10.2
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.1.3
Kết hợp và .
Bước 4.1.4
Kết hợp các tử số trên mẫu số chung.
Bước 4.1.5
Rút gọn tử số.
Bước 4.1.5.1
Nhân với .
Bước 4.1.5.2
Trừ khỏi .
Bước 4.1.6
Kết hợp và .
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Cho tử bằng không.
Bước 5.3
Giải phương trình để tìm .
Bước 5.3.1
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.3.1.1
Chia mỗi số hạng trong cho .
Bước 5.3.1.2
Rút gọn vế trái.
Bước 5.3.1.2.1
Triệt tiêu thừa số chung.
Bước 5.3.1.2.2
Chia cho .
Bước 5.3.1.3
Rút gọn vế phải.
Bước 5.3.1.3.1
Chia cho .
Bước 5.3.2
Lấy mũ lũy thừa hai vế để khử mũ phân số vế bên trái.
Bước 5.3.3
Rút gọn biểu thức mũ.
Bước 5.3.3.1
Rút gọn vế trái.
Bước 5.3.3.1.1
Rút gọn .
Bước 5.3.3.1.1.1
Nhân các số mũ trong .
Bước 5.3.3.1.1.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 5.3.3.1.1.1.2
Triệt tiêu thừa số chung .
Bước 5.3.3.1.1.1.2.1
Triệt tiêu thừa số chung.
Bước 5.3.3.1.1.1.2.2
Viết lại biểu thức.
Bước 5.3.3.1.1.2
Rút gọn.
Bước 5.3.3.2
Rút gọn vế phải.
Bước 5.3.3.2.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 6
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Bước 9.1
Rút gọn biểu thức.
Bước 9.1.1
Viết lại ở dạng .
Bước 9.1.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.2
Triệt tiêu thừa số chung .
Bước 9.2.1
Triệt tiêu thừa số chung.
Bước 9.2.2
Viết lại biểu thức.
Bước 9.3
Rút gọn biểu thức.
Bước 9.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.3.2
Nhân với .
Bước 9.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 9.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Không xác định
Bước 10
Bước 10.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 10.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.2.1
Thay thế biến bằng trong biểu thức.
Bước 10.2.2
Câu trả lời cuối cùng là .
Bước 10.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.3.1
Thay thế biến bằng trong biểu thức.
Bước 10.3.2
Rút gọn kết quả.
Bước 10.3.2.1
Rút gọn tử số.
Bước 10.3.2.1.1
Viết lại ở dạng .
Bước 10.3.2.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 10.3.2.1.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 10.3.2.1.4
Kết hợp và .
Bước 10.3.2.1.5
Kết hợp các tử số trên mẫu số chung.
Bước 10.3.2.1.6
Rút gọn tử số.
Bước 10.3.2.1.6.1
Nhân với .
Bước 10.3.2.1.6.2
Cộng và .
Bước 10.3.2.2
Câu trả lời cuối cùng là .
Bước 10.4
Vì đạo hàm bậc nhất đổi dấu từ âm sang dương xung quanh , nên là một cực tiểu địa phương.
là cực tiểu địa phương
là cực tiểu địa phương
Bước 11