Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.2.4
Kết hợp và .
Bước 1.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 1.2.6
Rút gọn tử số.
Bước 1.2.6.1
Nhân với .
Bước 1.2.6.2
Trừ khỏi .
Bước 1.2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.2.8
Kết hợp và .
Bước 1.2.9
Kết hợp và .
Bước 1.2.10
Nhân với .
Bước 1.2.11
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 1.2.12
Đưa ra ngoài .
Bước 1.2.13
Triệt tiêu các thừa số chung.
Bước 1.2.13.1
Đưa ra ngoài .
Bước 1.2.13.2
Triệt tiêu thừa số chung.
Bước 1.2.13.3
Viết lại biểu thức.
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Sắp xếp lại các số hạng.
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Viết lại ở dạng .
Bước 2.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.5
Nhân các số mũ trong .
Bước 2.3.5.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.3.5.2
Kết hợp và .
Bước 2.3.5.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.6
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.3.7
Kết hợp và .
Bước 2.3.8
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.9
Rút gọn tử số.
Bước 2.3.9.1
Nhân với .
Bước 2.3.9.2
Trừ khỏi .
Bước 2.3.10
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.11
Kết hợp và .
Bước 2.3.12
Kết hợp và .
Bước 2.3.13
Nhân với bằng cách cộng các số mũ.
Bước 2.3.13.1
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.3.13.2
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.13.3
Trừ khỏi .
Bước 2.3.13.4
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.14
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 2.3.15
Nhân với .
Bước 2.3.16
Kết hợp và .
Bước 2.3.17
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2
Tính .
Bước 4.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.1.2.4
Kết hợp và .
Bước 4.1.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 4.1.2.6
Rút gọn tử số.
Bước 4.1.2.6.1
Nhân với .
Bước 4.1.2.6.2
Trừ khỏi .
Bước 4.1.2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.1.2.8
Kết hợp và .
Bước 4.1.2.9
Kết hợp và .
Bước 4.1.2.10
Nhân với .
Bước 4.1.2.11
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 4.1.2.12
Đưa ra ngoài .
Bước 4.1.2.13
Triệt tiêu các thừa số chung.
Bước 4.1.2.13.1
Đưa ra ngoài .
Bước 4.1.2.13.2
Triệt tiêu thừa số chung.
Bước 4.1.2.13.3
Viết lại biểu thức.
Bước 4.1.3
Tính .
Bước 4.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.3.3
Nhân với .
Bước 4.1.4
Sắp xếp lại các số hạng.
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Bước 5.2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 5.2.2
BCNN của một và bất kỳ biểu thức nào chính là biểu thức đó.
Bước 5.3
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Bước 5.3.1
Nhân mỗi số hạng trong với .
Bước 5.3.2
Rút gọn vế trái.
Bước 5.3.2.1
Rút gọn mỗi số hạng.
Bước 5.3.2.1.1
Nhân với bằng cách cộng các số mũ.
Bước 5.3.2.1.1.1
Di chuyển .
Bước 5.3.2.1.1.2
Nhân với .
Bước 5.3.2.1.1.2.1
Nâng lên lũy thừa .
Bước 5.3.2.1.1.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.3.2.1.1.3
Viết ở dạng một phân số với một mẫu số chung.
Bước 5.3.2.1.1.4
Kết hợp các tử số trên mẫu số chung.
Bước 5.3.2.1.1.5
Cộng và .
Bước 5.3.2.1.2
Triệt tiêu thừa số chung .
Bước 5.3.2.1.2.1
Triệt tiêu thừa số chung.
Bước 5.3.2.1.2.2
Viết lại biểu thức.
Bước 5.3.3
Rút gọn vế phải.
Bước 5.3.3.1
Nhân với .
Bước 5.4
Giải phương trình.
Bước 5.4.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.4.2
Lấy mũ lũy thừa hai vế để khử mũ phân số vế bên trái.
Bước 5.4.3
Rút gọn vế trái.
Bước 5.4.3.1
Rút gọn .
Bước 5.4.3.1.1
Áp dụng quy tắc tích số cho .
Bước 5.4.3.1.2
Nhân các số mũ trong .
Bước 5.4.3.1.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 5.4.3.1.2.2
Triệt tiêu thừa số chung .
Bước 5.4.3.1.2.2.1
Triệt tiêu thừa số chung.
Bước 5.4.3.1.2.2.2
Viết lại biểu thức.
Bước 5.4.3.1.2.3
Triệt tiêu thừa số chung .
Bước 5.4.3.1.2.3.1
Triệt tiêu thừa số chung.
Bước 5.4.3.1.2.3.2
Viết lại biểu thức.
Bước 5.4.3.1.3
Rút gọn.
Bước 5.4.3.1.4
Sắp xếp lại các thừa số trong .
Bước 5.4.4
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 5.4.4.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 5.4.4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.4.4.2.1
Chia mỗi số hạng trong cho .
Bước 5.4.4.2.2
Rút gọn vế trái.
Bước 5.4.4.2.2.1
Triệt tiêu thừa số chung.
Bước 5.4.4.2.2.2
Chia cho .
Bước 5.4.4.3
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 5.4.4.4
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.4.4.4.1
Chia mỗi số hạng trong cho .
Bước 5.4.4.4.2
Rút gọn vế trái.
Bước 5.4.4.4.2.1
Triệt tiêu thừa số chung.
Bước 5.4.4.4.2.2
Chia cho .
Bước 5.4.4.4.3
Rút gọn vế phải.
Bước 5.4.4.4.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.4.4.5
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 5.5
Loại bỏ đáp án không làm cho đúng.
Bước 6
Bước 6.1
Chuyển đổi các biểu thức có số mũ dạng phân số thành các căn thức
Bước 6.1.1
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 6.1.2
Bất kỳ đại lượng nào mũ lên đều là chính nó.
Bước 6.2
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 6.3
Giải tìm .
Bước 6.3.1
Để loại bỏ dấu căn ở vế trái của phương trình, lấy mũ ba cả hai vế của phương trình.
Bước 6.3.2
Rút gọn mỗi vế của phương trình.
Bước 6.3.2.1
Sử dụng để viết lại ở dạng .
Bước 6.3.2.2
Rút gọn vế trái.
Bước 6.3.2.2.1
Rút gọn .
Bước 6.3.2.2.1.1
Nhân các số mũ trong .
Bước 6.3.2.2.1.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 6.3.2.2.1.1.2
Triệt tiêu thừa số chung .
Bước 6.3.2.2.1.1.2.1
Triệt tiêu thừa số chung.
Bước 6.3.2.2.1.1.2.2
Viết lại biểu thức.
Bước 6.3.2.2.1.2
Rút gọn.
Bước 6.3.2.3
Rút gọn vế phải.
Bước 6.3.2.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Bước 9.1
Rút gọn biểu thức.
Bước 9.1.1
Viết lại ở dạng .
Bước 9.1.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.2
Triệt tiêu thừa số chung .
Bước 9.2.1
Triệt tiêu thừa số chung.
Bước 9.2.2
Viết lại biểu thức.
Bước 9.3
Rút gọn biểu thức.
Bước 9.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.3.2
Nhân với .
Bước 9.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 9.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Không xác định
Bước 10
Bước 10.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 10.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.2.1
Thay thế biến bằng trong biểu thức.
Bước 10.2.2
Rút gọn kết quả.
Bước 10.2.2.1
Nhân với .
Bước 10.2.2.2
Câu trả lời cuối cùng là .
Bước 10.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.3.1
Thay thế biến bằng trong biểu thức.
Bước 10.3.2
Rút gọn kết quả.
Bước 10.3.2.1
Nhân với .
Bước 10.3.2.2
Câu trả lời cuối cùng là .
Bước 10.4
Vì đạo hàm bậc nhất đổi dấu từ dương sang âm xung quanh , nên là một cực đại địa phương.
là cực đại địa phương
là cực đại địa phương
Bước 11