Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến -3 của (x^2+3x)/( căn bậc hai của x^2+6x+9)
Bước 1
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.2
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.1.2.3
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.2.4
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Bước 1.1.2.4.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.4.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.5
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.1.2.5.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.2.5.1.1
Nâng lên lũy thừa .
Bước 1.1.2.5.1.2
Nhân với .
Bước 1.1.2.5.2
Trừ khỏi .
Bước 1.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
Di chuyển giới hạn vào dưới dấu căn.
Bước 1.1.3.2
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.3
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.1.3.4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.3.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.6
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Bước 1.1.3.6.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.6.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.7
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.1.3.7.1
Nâng lên lũy thừa .
Bước 1.1.3.7.2
Nhân với .
Bước 1.1.3.7.3
Trừ khỏi .
Bước 1.1.3.7.4
Cộng .
Bước 1.1.3.7.5
Viết lại ở dạng .
Bước 1.1.3.7.6
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 1.1.3.7.7
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.3.8
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.4
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.4.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.4.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.4.3
Nhân với .
Bước 1.3.5
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 1.3.5.1
Phân tích thành thừa số bằng quy tắc số chính phương.
Nhấp để xem thêm các bước...
Bước 1.3.5.1.1
Viết lại ở dạng .
Bước 1.3.5.1.2
Kiểm tra xem số hạng ở giữa có gấp đôi tích của các số trước khi được bình phương ở số hạng thứ nhất và số hạng thứ ba không.
Bước 1.3.5.1.3
Viết lại đa thức này.
Bước 1.3.5.1.4
Phân tích thành thừa số bằng quy tắc tam thức chính phương , trong đó .
Bước 1.3.5.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 1.3.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.8
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.9
Cộng .
Bước 1.4
Chia cho .
Bước 2
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 3
Tính giới hạn của bằng cách điền vào cho .
Bước 4
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.1
Nhân với .
Bước 4.2
Cộng .