Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Nhân với .
Bước 1.2
Kết hợp bằng các sử dụng quy tắc tích số cho các căn thức.
Bước 1.3
Nhân với .
Bước 1.4
Kết hợp và rút gọn mẫu số.
Bước 1.4.1
Nhân với .
Bước 1.4.2
Nâng lên lũy thừa .
Bước 1.4.3
Nâng lên lũy thừa .
Bước 1.4.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 1.4.5
Cộng và .
Bước 1.4.6
Viết lại ở dạng .
Bước 1.4.6.1
Sử dụng để viết lại ở dạng .
Bước 1.4.6.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.4.6.3
Kết hợp và .
Bước 1.4.6.4
Triệt tiêu thừa số chung .
Bước 1.4.6.4.1
Triệt tiêu thừa số chung.
Bước 1.4.6.4.2
Viết lại biểu thức.
Bước 1.4.6.5
Rút gọn.
Bước 1.5
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Bước 1.5.1
Áp dụng quy tắc tích số cho .
Bước 1.5.2
Áp dụng quy tắc tích số cho .
Bước 1.6
Rút gọn tử số.
Bước 1.6.1
Nâng lên lũy thừa .
Bước 1.6.2
Viết lại ở dạng .
Bước 1.6.2.1
Sử dụng để viết lại ở dạng .
Bước 1.6.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.6.2.3
Kết hợp và .
Bước 1.6.2.4
Triệt tiêu thừa số chung .
Bước 1.6.2.4.1
Triệt tiêu thừa số chung.
Bước 1.6.2.4.2
Viết lại biểu thức.
Bước 1.6.2.5
Rút gọn.
Bước 1.7
Triệt tiêu thừa số chung của và .
Bước 1.7.1
Đưa ra ngoài .
Bước 1.7.2
Triệt tiêu các thừa số chung.
Bước 1.7.2.1
Đưa ra ngoài .
Bước 1.7.2.2
Triệt tiêu thừa số chung.
Bước 1.7.2.3
Viết lại biểu thức.
Bước 1.8
Viết ở dạng một phân số với một mẫu số chung.
Bước 1.9
Kết hợp các tử số trên mẫu số chung.
Bước 1.10
Kết hợp và .
Bước 1.11
Triệt tiêu thừa số chung .
Bước 1.11.1
Triệt tiêu thừa số chung.
Bước 1.11.2
Chia cho .
Bước 2
Vì không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 3
Bước 3.1
Hãy đặt . Tìm .
Bước 3.1.1
Tính đạo hàm .
Bước 3.1.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.1.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.1.5
Cộng và .
Bước 3.2
Thay giới hạn dưới vào cho trong .
Bước 3.3
Cộng và .
Bước 3.4
Thay giới hạn trên vào cho trong .
Bước 3.5
Cộng và .
Bước 3.6
Các giá trị tìm được cho và sẽ được sử dụng để tính tích phân xác định.
Bước 3.7
Viết lại bài tập bằng cách dùng , , và các giới hạn mới của phép tích phân.
Bước 4
Sử dụng để viết lại ở dạng .
Bước 5
Theo Quy tắc lũy thừa, tích phân của đối với là .
Bước 6
Kết hợp và .
Bước 7
Bước 7.1
Tính tại và tại .
Bước 7.2
Rút gọn.
Bước 7.2.1
Viết lại ở dạng .
Bước 7.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 7.2.3
Triệt tiêu thừa số chung .
Bước 7.2.3.1
Triệt tiêu thừa số chung.
Bước 7.2.3.2
Viết lại biểu thức.
Bước 7.2.4
Nâng lên lũy thừa .
Bước 7.2.5
Nhân với .
Bước 7.2.6
Viết lại ở dạng .
Bước 7.2.7
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 7.2.8
Triệt tiêu thừa số chung .
Bước 7.2.8.1
Triệt tiêu thừa số chung.
Bước 7.2.8.2
Viết lại biểu thức.
Bước 7.2.9
Nâng lên lũy thừa .
Bước 7.2.10
Nhân với .
Bước 7.2.11
Kết hợp các tử số trên mẫu số chung.
Bước 7.2.12
Trừ khỏi .
Bước 7.2.13
Kết hợp và .
Bước 7.2.14
Nhân với .
Bước 7.2.15
Kết hợp và .
Bước 7.2.16
Di chuyển sang phía bên trái của .
Bước 8
Sắp xếp lại các số hạng.
Bước 9
Kết hợp và .
Bước 10