Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Bước 1.1.2.1
Tính giới hạn.
Bước 1.1.2.1.1
Di chuyển giới hạn vào dưới dấu căn.
Bước 1.1.2.1.2
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.1.4
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.3
Rút gọn kết quả.
Bước 1.1.2.3.1
Nâng lên lũy thừa .
Bước 1.1.2.3.2
Nhân với .
Bước 1.1.2.3.3
Trừ khỏi .
Bước 1.1.2.3.4
Viết lại ở dạng .
Bước 1.1.2.3.5
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 1.1.3
Tính giới hạn của mẫu số.
Bước 1.1.3.1
Tính giới hạn.
Bước 1.1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.3
Rút gọn kết quả.
Bước 1.1.3.3.1
Nhân với .
Bước 1.1.3.3.2
Trừ khỏi .
Bước 1.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Sử dụng để viết lại ở dạng .
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.4
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.3.5
Kết hợp và .
Bước 1.3.6
Kết hợp các tử số trên mẫu số chung.
Bước 1.3.7
Rút gọn tử số.
Bước 1.3.7.1
Nhân với .
Bước 1.3.7.2
Trừ khỏi .
Bước 1.3.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.3.9
Kết hợp và .
Bước 1.3.10
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 1.3.11
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.12
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.13
Cộng và .
Bước 1.3.14
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.15
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.16
Nhân với .
Bước 1.3.17
Kết hợp và .
Bước 1.3.18
Kết hợp và .
Bước 1.3.19
Đưa ra ngoài .
Bước 1.3.20
Triệt tiêu các thừa số chung.
Bước 1.3.20.1
Đưa ra ngoài .
Bước 1.3.20.2
Triệt tiêu thừa số chung.
Bước 1.3.20.3
Viết lại biểu thức.
Bước 1.3.21
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.3.22
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.23
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.24
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.25
Cộng và .
Bước 1.4
Nhân tử số với nghịch đảo của mẫu số.
Bước 1.5
Viết lại ở dạng .
Bước 1.6
Nhân với .
Bước 2
Bước 2.1
Xét giới hạn với bội số không đổi đã bị loại bỏ.
Bước 2.2
Vì tử số dương và mẫu số tiến dần đến 0 và lớn hơn 0 đối với gần từ phía bên trái, nên hàm số tăng không giới hạn.
Bước 2.3
Vì hàm số tiến dần đến , nên hằng số âm nhân với hàm số tiến dần đến .