Тригонометрия Примеры

Step 1
Найдем вершину функции абсолютного значения. В этом случае вершина лежит в точке .
Нажмите для увеличения количества этапов...
Чтобы найти координату вершины, зададим абсолютное значение равным . В данном случае .
Решим уравнение , чтобы найти координату вершины графика абсолютного значения.
Нажмите для увеличения количества этапов...
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Вычтем из .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Объединим ответы.
, для любого целого
, для любого целого
Заменим в этом выражении переменную на .
Вершина графика абсолютного значения находится в точке .
Step 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Step 3
График функции абсолютного значения можно построить по точкам около вершины .
Step 4
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация