Введите задачу...
Тригонометрия Примеры
Step 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Step 2
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Упростим .
Перепишем в виде .
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Плюс или минус равно .
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Упростим правую часть.
Точное значение : .
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Упростим .
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим дроби.
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Умножим на .
Вычтем из .
Найдем период .
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Объединим ответы.
, для любого целого
, для любого целого
Step 3
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
, для любого целого числа
Step 4