Тригонометрия Примеры

Step 1
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Step 2
Любой корень из равен .
Step 3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Step 4
Выпишем каждое выражение, чтобы найти решение для .
Step 5
Решим относительно в .
Нажмите для увеличения количества этапов...
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Умножим числитель на величину, обратную знаменателю.
Умножим .
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Решим относительно .
Нажмите для увеличения количества этапов...
Упростим.
Нажмите для увеличения количества этапов...
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим и .
Объединим числители над общим знаменателем.
Вычтем из .
Нажмите для увеличения количества этапов...
Изменим порядок и .
Вычтем из .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Умножим числитель на величину, обратную знаменателю.
Умножим .
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Step 6
Решим относительно в .
Нажмите для увеличения количества этапов...
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Умножим числитель на величину, обратную знаменателю.
Умножим .
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Вычтем из .
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Умножим числитель на величину, обратную знаменателю.
Умножим .
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Добавим к , чтобы найти положительный угол.
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим дроби.
Нажмите для увеличения количества этапов...
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Перенесем влево от .
Вычтем из .
Перечислим новые углы.
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Step 7
Перечислим все решения.
, для любого целого
Step 8
Объединим ответы.
, для любого целого
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация