Тригонометрия Примеры

Step 1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Step 2
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Step 3
Упростим .
Нажмите для увеличения количества этапов...
Перепишем в виде .
Любой корень из равен .
Умножим на .
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем в виде .
Нажмите для увеличения количества этапов...
С помощью запишем в виде .
Применим правило степени и перемножим показатели, .
Объединим и .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Найдем экспоненту.
Step 4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Step 5
Выпишем каждое выражение, чтобы найти решение для .
Step 6
Решим относительно в .
Нажмите для увеличения количества этапов...
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Упростим .
Нажмите для увеличения количества этапов...
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим дроби.
Нажмите для увеличения количества этапов...
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Вычтем из .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Step 7
Решим относительно в .
Нажмите для увеличения количества этапов...
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Упростим .
Нажмите для увеличения количества этапов...
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим дроби.
Нажмите для увеличения количества этапов...
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Вычтем из .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Step 8
Перечислим все решения.
, для любого целого
Step 9
Объединим ответы.
, для любого целого
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация