Введите задачу...
Тригонометрия Примеры
,
Step 1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Упростим правую часть.
Точное значение : .
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Вычтем из .
Найдем период .
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Объединим ответы.
, для любого целого
Используем каждый корень для создания контрольных интервалов.
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Истина
Решение состоит из всех истинных интервалов.
, для любого целого
, для любого целого
Step 2
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Упростим правую часть.
Точное значение : .
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Добавим и .
Найдем период .
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Объединим ответы.
, для любого целого
Используем каждый корень для создания контрольных интервалов.
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Ложь
Поскольку попадающие в этот интервал числа отсутствуют, это неравенство не имеет решения.
Нет решения
Нет решения
Step 3
Построим каждый график в одной системе координат.
Step 4