Введите задачу...
Тригонометрия Примеры
Step 1
Вертикальные асимптоты функции находятся в точках , где — целое число. Используя основной период для , найдем вертикальные асимптоты для . Положив аргумент тангенса, , равным в выражении , найдем положение вертикальной асимптоты для .
Приравняем аргумент функции тангенса к .
Основной период находится на промежутке , где и являются вертикальными асимптотами.
Найдем период , чтобы найти, где находятся вертикальные асимптоты.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Вертикальные асимптоты расположены в , и в каждой точке , где — целое число.
У функций тангенса и котангенса есть только вертикальные асимптоты.
Вертикальные асимптоты: для всех целых
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: для всех целых
Нет горизонтальных асимптот
Нет наклонных асимптот
Step 2
Применим форму , чтобы найти переменные, используемые для вычисления амплитуды, периода, сдвига фазы и смещения по вертикали.
Step 3
Поскольку график функции не имеет максимального или минимального значения, его амплитуда не может быть определена.
Амплитуда: нет
Step 4
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Step 5
Сдвиг фазы функции можно вычислить по формуле .
Сдвиг фазы:
Заменим величины и в уравнении на сдвиг фазы.
Сдвиг фазы:
Разделим на .
Сдвиг фазы:
Сдвиг фазы:
Step 6
Перечислим свойства тригонометрической функции.
Амплитуда: нет
Период:
Сдвиг фазы: нет
Смещение по вертикали: нет
Step 7
График тригонометрической функции можно построить, используя амплитуду, период, сдвиг фазы, смещение по вертикали и точки.
Вертикальные асимптоты: для всех целых
Амплитуда: нет
Период:
Сдвиг фазы: нет
Смещение по вертикали: нет
Step 8