Основы мат. анализа Примеры

Преобразовать к интервальному виду 2x-8>=-3x^2
Step 1
Добавим к обеим частям неравенства.
Step 2
Преобразуем неравенство в уравнение.
Step 3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Изменим порядок членов.
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Запишем как плюс
Применим свойство дистрибутивности.
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Сгруппируем первые два члена и последние два члена.
Вынесем наибольший общий делитель (НОД) из каждой группы.
Разложим многочлен, вынеся наибольший общий делитель .
Step 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Step 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Приравняем к .
Решим относительно .
Нажмите для увеличения количества этапов...
Добавим к обеим частям уравнения.
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Step 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Приравняем к .
Вычтем из обеих частей уравнения.
Step 7
Окончательным решением являются все значения, при которых верно.
Step 8
Используем каждый корень для создания контрольных интервалов.
Step 9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Заменим на в исходном неравенстве.
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Step 10
Решение состоит из всех истинных интервалов.
или
Step 11
Преобразуем неравенство в интервальное представление.
Step 12
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация