Математический анализ Примеры

Step 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Нажмите для увеличения количества этапов...
Добавим и .
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Вычтем из .
Step 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Применим правило степени и перемножим показатели, .
Умножим на .
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Продифференцируем.
Нажмите для увеличения количества этапов...
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Нажмите для увеличения количества этапов...
Добавим и .
Перенесем влево от .
Умножим на .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим числитель.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Перепишем, используя свойство коммутативности умножения.
Перепишем в виде .
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Применим правило степени для объединения показателей.
Добавим и .
Перенесем влево от .
Умножим на .
Вычтем из .
Применим свойство дистрибутивности.
Упростим.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Применим свойство дистрибутивности.
Упростим.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем, используя свойство коммутативности умножения.
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на .
Умножим на .
Добавим и .
Добавим и .
Добавим и .
Вычтем из .
Упростим числитель.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Перепишем в виде .
Пусть . Подставим вместо для всех.
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Запишем разложение на множители, используя данные целые числа.
Заменим все вхождения на .
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Применим правило умножения к .
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Step 3
Вторая производная по равна .
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация