Введите задачу...
Математический анализ Примеры
Step 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Добавим и .
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Вычтем из .
Step 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Перемножим экспоненты в .
Применим правило степени и перемножим показатели, .
Умножим на .
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Продифференцируем.
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Добавим и .
Перенесем влево от .
Умножим на .
Упростим.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим числитель.
Упростим каждый член.
Перепишем, используя свойство коммутативности умножения.
Перепишем в виде .
Развернем , используя метод «первые-внешние-внутренние-последние».
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Упростим каждый член.
Умножим на , сложив экспоненты.
Применим правило степени для объединения показателей.
Добавим и .
Перенесем влево от .
Умножим на .
Вычтем из .
Применим свойство дистрибутивности.
Упростим.
Умножим на .
Умножим на .
Применим свойство дистрибутивности.
Упростим.
Умножим на , сложив экспоненты.
Перенесем .
Умножим на .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на , сложив экспоненты.
Перенесем .
Умножим на .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Упростим каждый член.
Умножим на .
Умножим на .
Умножим на , сложив экспоненты.
Умножим на .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Развернем , используя метод «первые-внешние-внутренние-последние».
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Упростим каждый член.
Умножим на , сложив экспоненты.
Перенесем .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем, используя свойство коммутативности умножения.
Умножим на , сложив экспоненты.
Перенесем .
Умножим на .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на .
Умножим на .
Добавим и .
Добавим и .
Добавим и .
Вычтем из .
Упростим числитель.
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Перепишем в виде .
Пусть . Подставим вместо для всех.
Разложим на множители, используя метод группировки.
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Запишем разложение на множители, используя данные целые числа.
Заменим все вхождения на .
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Упростим знаменатель.
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Применим правило умножения к .
Сократим общий множитель и .
Вынесем множитель из .
Сократим общие множители.
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Сократим общий множитель и .
Вынесем множитель из .
Сократим общие множители.
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Step 3
Вторая производная по равна .