Математический анализ Примеры

Step 1
Запишем в виде функции.
Step 2
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Нажмите для увеличения количества этапов...
Добавим и .
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Вычтем из .
Объединим и .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Применим правило степени и перемножим показатели, .
Умножим на .
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Продифференцируем.
Нажмите для увеличения количества этапов...
Умножим на .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Нажмите для увеличения количества этапов...
Добавим и .
Перенесем влево от .
Умножим на .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим числитель.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Перепишем, используя свойство коммутативности умножения.
Перепишем в виде .
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Применим правило степени для объединения показателей.
Добавим и .
Перенесем влево от .
Умножим на .
Вычтем из .
Применим свойство дистрибутивности.
Упростим.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Применим свойство дистрибутивности.
Упростим.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Применим правило степени для объединения показателей.
Добавим и .
Перепишем, используя свойство коммутативности умножения.
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Умножим на .
Умножим на .
Добавим и .
Добавим и .
Добавим и .
Вычтем из .
Упростим числитель.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Перепишем в виде .
Пусть . Подставим вместо для всех.
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Запишем разложение на множители, используя данные целые числа.
Заменим все вхождения на .
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Перепишем в виде .
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Применим правило умножения к .
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Вторая производная по равна .
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть вторая производная равна .
Приравняем числитель к нулю.
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Приравняем к .
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Приравняем к .
Решим относительно .
Нажмите для увеличения количества этапов...
Вычтем из обеих частей уравнения.
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Упростим .
Нажмите для увеличения количества этапов...
Перепишем в виде .
Перепишем в виде .
Перепишем в виде .
Перепишем в виде .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Перепишем в виде .
Вынесем члены из-под знака корня.
Перенесем влево от .
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Окончательным решением являются все значения, при которых верно.
Step 3
Найдем область определения .
Нажмите для увеличения количества этапов...
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Решим относительно .
Нажмите для увеличения количества этапов...
Добавим к обеим частям уравнения.
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Упростим .
Нажмите для увеличения количества этапов...
Перепишем в виде .
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Step 4
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Step 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Добавим и .
Вычтем из .
Возведем в степень .
Возведем в степень .
Упростим числитель.
Нажмите для увеличения количества этапов...
Возведем в степень .
Добавим и .
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Вынесем знак минуса перед дробью.
Окончательный ответ: .
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Step 6
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Добавим и .
Вычтем из .
Единица в любой степени равна единице.
Возведем в степень .
Умножим на .
Упростим числитель.
Нажмите для увеличения количества этапов...
Возведем в степень .
Добавим и .
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Умножим на .
Деление двух отрицательных значений дает положительное значение.
Окончательный ответ: .
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 7
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Добавим и .
Вычтем из .
Возведем в степень .
Возведем в степень .
Упростим числитель.
Нажмите для увеличения количества этапов...
Единица в любой степени равна единице.
Добавим и .
Упростим выражение.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Вынесем знак минуса перед дробью.
Окончательный ответ: .
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Step 8
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Добавим и .
Вычтем из .
Возведем в степень .
Возведем в степень .
Упростим числитель.
Нажмите для увеличения количества этапов...
Возведем в степень .
Добавим и .
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Окончательный ответ: .
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 9
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 10
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация