Математический анализ Примеры

Найти особые точки x^3+3x^2+3x+1
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть первая производная равна .
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Перепишем в виде .
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Перепишем многочлен.
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Разделим на .
Приравняем к .
Вычтем из обеих частей уравнения.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Найдем значение в .
Нажмите для увеличения количества этапов...
Подставим вместо .
Упростим.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Возведем в степень .
Возведем в степень .
Умножим на .
Умножим на .
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Добавим и .
Вычтем из .
Добавим и .
Перечислим все точки.
Этап 5
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация