Математический анализ Примеры

Найти точки перегиба f(x)=x^4
Step 1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Вторая производная по равна .
Step 2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть вторая производная равна .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Разделим на .
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Упростим .
Нажмите для увеличения количества этапов...
Перепишем в виде .
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Плюс или минус равно .
Step 3
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Возведение в любую положительную степень дает .
Окончательный ответ: .
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Step 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Step 5
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Возведем в степень .
Умножим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Step 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Возведем в степень .
Умножим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Step 7
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. На графике нет точек, удовлетворяющих этим требованиям.
Нет точек перегиба
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация