Математический анализ Примеры

Step 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Найдем вторую производную.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Вторая производная по равна .
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть вторая производная равна .
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Разделим на .
Step 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Step 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Step 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Окончательный ответ: .
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Step 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Умножим на .
Окончательный ответ: .
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 6
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 7
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация