Математический анализ Примеры

Trovare la Second Derivata f(x)=(1-cos(x))/(sin(x))
Step 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Поскольку является константой относительно , производная по равна .
Производная по равна .
Умножим.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Производная по равна .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим числитель.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Перепишем в виде .
Умножим .
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим .
Нажмите для увеличения количества этапов...
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Перенесем .
Применим формулу Пифагора.
Step 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Продифференцируем.
Нажмите для увеличения количества этапов...
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Применим правило степени и перемножим показатели, .
Умножим на .
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Поскольку является константой относительно , производная по равна .
Производная по равна .
Умножим.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Умножим на .
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Сократим общие множители.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Сократим общий множитель.
Перепишем это выражение.
Производная по равна .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Применим свойство дистрибутивности.
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим .
Нажмите для увеличения количества этапов...
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Добавим и .
Step 3
Вторая производная по равна .
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация