Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Производная по равна .
Заменим все вхождения на .
Продифференцируем.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Объединим дроби.
Нажмите для увеличения количества этапов...
Добавим и .
Объединим и .
Перенесем влево от .
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть первая производная равна .
Приравняем числитель к нулю.
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Разделим на .
Добавим к обеим частям уравнения.
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Решим относительно .
Нажмите для увеличения количества этапов...
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Плюс или минус равно .
Добавим к обеим частям уравнения.
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Найдем значение в .
Нажмите для увеличения количества этапов...
Подставим вместо .
Упростим.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Вычтем из .
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Перечислим все точки.
Этап 5
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация