Математический анализ Примеры

Найти точки перегиба f(x)=sin(x/2)
Step 1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Производная по равна .
Заменим все вхождения на .
Продифференцируем.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Объединим и .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Производная по равна .
Заменим все вхождения на .
Продифференцируем.
Нажмите для увеличения количества этапов...
Объединим и .
Поскольку является константой относительно , производная по равна .
Объединим дроби.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Вторая производная по равна .
Step 2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть вторая производная равна .
Приравняем числитель к нулю.
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Приравняем числитель к нулю.
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Решим относительно .
Нажмите для увеличения количества этапов...
Умножим обе части уравнения на .
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Упростим правую часть.
Нажмите для увеличения количества этапов...
Вычтем из .
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Умножим числитель на величину, обратную знаменателю.
Умножим на .
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Объединим ответы.
, для любого целого
, для любого целого
Step 3
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Step 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Step 5
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Упростим числитель.
Нажмите для увеличения количества этапов...
Разделим на .
Найдем значение .
Упростим выражение.
Нажмите для увеличения количества этапов...
Разделим на .
Умножим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Step 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Упростим числитель.
Нажмите для увеличения количества этапов...
Разделим на .
Найдем значение .
Упростим выражение.
Нажмите для увеличения количества этапов...
Разделим на .
Умножим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Step 7
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Step 8
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация